|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""RWKV079Qwen3 model configuration""" |
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.modeling_rope_utils import rope_config_validation |
|
|
from transformers.utils import logging |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, TypedDict |
|
|
class RopeParameters(TypedDict): |
|
|
""" |
|
|
Args: |
|
|
rope_theta (`float`): |
|
|
The base period of the RoPE embeddings. |
|
|
rope_type (`str`, *optional*, defaults to "default"): |
|
|
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', |
|
|
'llama3'], with 'default' being the original RoPE implementation. |
|
|
factor (`float`, *optional*): |
|
|
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In |
|
|
most scaling types, a `factor` of x will enable the model to handle sequences of length x * |
|
|
original maximum pre-trained length. |
|
|
original_max_position_embeddings (`int`, *optional*): |
|
|
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during |
|
|
pretraining. |
|
|
attention_factor (`float`, *optional*): |
|
|
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention |
|
|
computation. If unspecified, it defaults to value recommended by the implementation, using the |
|
|
`factor` field to infer the suggested value. |
|
|
beta_fast (`float`, *optional*): |
|
|
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear |
|
|
ramp function. If unspecified, it defaults to 32. |
|
|
beta_slow (`float`, *optional*): |
|
|
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear |
|
|
ramp function. If unspecified, it defaults to 1. |
|
|
short_factor (`list[float]`, *optional*): |
|
|
Only used with 'longrope'. The scaling factor to be applied to short contexts (< |
|
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
|
size divided by the number of attention heads divided by 2 |
|
|
long_factor (`list[float]`, *optional*): |
|
|
Only used with 'longrope'. The scaling factor to be applied to long contexts (< |
|
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
|
size divided by the number of attention heads divided by 2 |
|
|
low_freq_factor (`float`, *optional*): |
|
|
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE |
|
|
high_freq_factor (`float`, *optional*): |
|
|
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE |
|
|
""" |
|
|
|
|
|
rope_theta: float |
|
|
rope_type: Optional[str] |
|
|
factor: Optional[float] |
|
|
original_max_position_embeddings: Optional[int] |
|
|
attention_factor: Optional[float] |
|
|
beta_fast: Optional[float] |
|
|
beta_slow: Optional[float] |
|
|
short_factor: Optional[list[float]] |
|
|
long_factor: Optional[list[float]] |
|
|
low_freq_factor: Optional[float] |
|
|
high_freq_factor: Optional[float] |
|
|
|
|
|
class Qwen3VLMoeTextConfig(PretrainedConfig): |
|
|
r""" |
|
|
This is the configuration class to store the configuration of a [`Qwen3VLMoeTextModel`]. It is used to instantiate a |
|
|
Qwen3-VL-MOE model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
|
with the defaults will yield a similar configuration to that of |
|
|
Qwen3-VL-30B-A3B-Instruct [Qwen/Qwen3-VL-30B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-30B-A3B-Instruct). |
|
|
|
|
|
Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the |
|
|
documentation from [`PreTrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
|
vocab_size (`int`, *optional*, defaults to 151936): |
|
|
Vocabulary size of the Qwen2MoE model. Defines the number of different tokens that can be represented by the |
|
|
`inputs_ids` passed when calling [`Qwen2MoeModel`] |
|
|
hidden_size (`int`, *optional*, defaults to 2048): |
|
|
Dimension of the hidden representations. |
|
|
intermediate_size (`int`, *optional*, defaults to 5632): |
|
|
Dimension of the MLP representations. |
|
|
num_hidden_layers (`int`, *optional*, defaults to 24): |
|
|
Number of hidden layers in the Transformer encoder. |
|
|
num_attention_heads (`int`, *optional*, defaults to 16): |
|
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
|
num_key_value_heads (`int`, *optional*, defaults to 16): |
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. |
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
|
The non-linear activation function (function or string) in the decoder. |
|
|
max_position_embeddings (`int`, *optional*, defaults to 128000): |
|
|
The maximum sequence length that this model might ever be used with. |
|
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
|
The epsilon used by the rms normalization layers. |
|
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
|
relevant if `config.is_decoder=True`. |
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
|
Whether the model's input and output word embeddings should be tied. |
|
|
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): |
|
|
Whether to use a bias in the query, key, value and output projection layers during self-attention. |
|
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
|
The dropout ratio for the attention probabilities. |
|
|
decoder_sparse_step (`int`, *optional*, defaults to 1): |
|
|
The frequency of the MoE layer. |
|
|
moe_intermediate_size (`int`, *optional*, defaults to 1408): |
|
|
Intermediate size of the routed expert. |
|
|
num_experts_per_tok (`int`, *optional*, defaults to 4): |
|
|
Number of selected experts. |
|
|
num_experts (`int`, *optional*, defaults to 60): |
|
|
Number of routed experts. |
|
|
mlp_only_layers (`List[int]`, *optional*, defaults to `[]`): |
|
|
Indicate which layers use Qwen3VLMoeMLP rather than Qwen3VLMoeSparseMoeBlock |
|
|
The list contains layer index, from 0 to num_layers-1 if we have num_layers layers |
|
|
If `mlp_only_layers` is empty, `decoder_sparse_step` is used to determine the sparsity. |
|
|
rope_parameters (`RopeParameters`, *optional*): |
|
|
Dictionary containing the configuration parameters for the RoPE embeddings. The dictionaty should contain |
|
|
a value for `rope_theta` and optionally parameters used for scaling in case you want to use RoPE |
|
|
with longer `max_position_embeddings`. |
|
|
head_dim (`int`, *optional*): |
|
|
The dimension of the head. If not specified, will default to `hidden_size // num_attention_heads`. |
|
|
|
|
|
```python |
|
|
>>> from transformers import Qwen3VLMoeForConditionalGeneration, Qwen3VLMoeConfig |
|
|
|
|
|
>>> # Initializing a Qwen3VLMoe style configuration |
|
|
>>> configuration = Qwen3VLMoeConfig() |
|
|
|
|
|
>>> # Initializing a model from the Qwen3-VL-30B-A3B style configuration |
|
|
>>> model = Qwen3VLMoeForConditionalGeneration(configuration) |
|
|
|
|
|
>>> # Accessing the model configuration |
|
|
>>> configuration = model.config |
|
|
```""" |
|
|
|
|
|
model_type = "qwen3_vl_moe_text" |
|
|
base_config_key = "text_config" |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
base_model_tp_plan = { |
|
|
"layers.*.self_attn.q_proj": "colwise", |
|
|
"layers.*.self_attn.k_proj": "colwise", |
|
|
"layers.*.self_attn.v_proj": "colwise", |
|
|
"layers.*.self_attn.o_proj": "rowwise", |
|
|
"layers.*.mlp.gate_proj": "colwise", |
|
|
"layers.*.mlp.up_proj": "colwise", |
|
|
"layers.*.mlp.down_proj": "rowwise", |
|
|
} |
|
|
base_model_pp_plan = { |
|
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]), |
|
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]), |
|
|
"norm": (["hidden_states"], ["hidden_states"]), |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size: Optional[int] = 151936, |
|
|
hidden_size: Optional[int] = 2048, |
|
|
intermediate_size: Optional[int] = 5632, |
|
|
num_hidden_layers: Optional[int] = 24, |
|
|
num_attention_heads: Optional[int] = 16, |
|
|
num_key_value_heads: Optional[int] = 16, |
|
|
hidden_act: Optional[str] = "silu", |
|
|
max_position_embeddings: Optional[int] = 128000, |
|
|
initializer_range: Optional[float] = 0.02, |
|
|
rms_norm_eps: Optional[float] = 1e-6, |
|
|
use_cache: Optional[bool] = True, |
|
|
tie_word_embeddings: Optional[bool] = False, |
|
|
attention_bias: Optional[bool] = False, |
|
|
attention_dropout: Optional[float] = 0.0, |
|
|
decoder_sparse_step: Optional[int] = 1, |
|
|
moe_intermediate_size: Optional[int] = 1408, |
|
|
num_experts_per_tok: Optional[int] = 4, |
|
|
num_experts: Optional[int] = 60, |
|
|
mlp_only_layers: Optional[list[int]] = None, |
|
|
rope_parameters: Optional[RopeParameters] = None, |
|
|
head_dim: Optional[int] = None, |
|
|
**kwargs, |
|
|
): |
|
|
self.vocab_size = vocab_size |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
|
|
|
self.layer_types = None |
|
|
|
|
|
|
|
|
if num_key_value_heads is None: |
|
|
num_key_value_heads = num_attention_heads |
|
|
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.hidden_act = hidden_act |
|
|
self.initializer_range = initializer_range |
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
self.use_cache = use_cache |
|
|
self.attention_bias = attention_bias |
|
|
self.attention_dropout = attention_dropout |
|
|
self.head_dim = head_dim or hidden_size // num_attention_heads |
|
|
|
|
|
rope_scaling = kwargs.pop("rope_scaling", None) |
|
|
self.rope_parameters = rope_scaling or rope_parameters |
|
|
|
|
|
self.sliding_window = None |
|
|
self.max_window_layers = 0 |
|
|
|
|
|
if self.layer_types is None: |
|
|
self.layer_types = [ |
|
|
"sliding_attention" |
|
|
if self.sliding_window is not None and i >= self.max_window_layers |
|
|
else "full_attention" |
|
|
for i in range(self.num_hidden_layers) |
|
|
] |
|
|
|
|
|
|
|
|
rope_theta = kwargs.get("rope_theta", 5000000.0) |
|
|
|
|
|
rope_config_validation(self, ignore_keys={"mrope_section", "mrope_interleaved"}) |
|
|
|
|
|
|
|
|
self.decoder_sparse_step = decoder_sparse_step |
|
|
self.moe_intermediate_size = moe_intermediate_size |
|
|
self.num_experts_per_tok = num_experts_per_tok |
|
|
self.num_experts = num_experts |
|
|
self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers |
|
|
|
|
|
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) |
|
|
|
|
|
|
|
|
class Qwen3VLMoeVisionConfig(PretrainedConfig): |
|
|
model_type = "qwen3_vl_moe" |
|
|
base_config_key = "vision_config" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
depth=27, |
|
|
hidden_size=1152, |
|
|
hidden_act="gelu_pytorch_tanh", |
|
|
intermediate_size=4304, |
|
|
num_heads=16, |
|
|
in_channels=3, |
|
|
patch_size=16, |
|
|
spatial_merge_size=2, |
|
|
temporal_patch_size=2, |
|
|
out_hidden_size=3584, |
|
|
num_position_embeddings=2304, |
|
|
deepstack_visual_indexes=[8, 16, 24], |
|
|
initializer_range=0.02, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(**kwargs) |
|
|
|
|
|
self.depth = depth |
|
|
self.hidden_size = hidden_size |
|
|
self.hidden_act = hidden_act |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_heads = num_heads |
|
|
self.in_channels = in_channels |
|
|
self.patch_size = patch_size |
|
|
self.spatial_merge_size = spatial_merge_size |
|
|
self.temporal_patch_size = temporal_patch_size |
|
|
self.out_hidden_size = out_hidden_size |
|
|
self.num_position_embeddings = num_position_embeddings |
|
|
self.initializer_range = initializer_range |
|
|
self.deepstack_visual_indexes = deepstack_visual_indexes |
|
|
|
|
|
|
|
|
class RWKV07BMoEConfig(PretrainedConfig): |
|
|
r""" |
|
|
This is the configuration class to store the configuration of a [`Qwen3VLMoeModel`]. It is used to instantiate a |
|
|
Qwen3-VL-MOE model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
|
with the defaults will yield a similar configuration to that of |
|
|
Qwen3-VL-30B-A3B-Instruct [Qwen/Qwen3-VL-30B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-30B-A3B-Instruct). |
|
|
|
|
|
Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the |
|
|
documentation from [`PreTrainedConfig`] for more information. |
|
|
|
|
|
|
|
|
Args: |
|
|
text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Qwen3VLMoeTextConfig`): |
|
|
The config object or dictionary of the text backbone. |
|
|
vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Qwen3VLMoeVisionConfig`): |
|
|
The config object or dictionary of the vision backbone. |
|
|
image_token_id (`int`, *optional*, defaults to 151655): |
|
|
The image token index to encode the image prompt. |
|
|
video_token_id (`int`, *optional*, defaults to 151656): |
|
|
The video token index to encode the image prompt. |
|
|
vision_start_token_id (`int`, *optional*, defaults to 151652): |
|
|
The start token index to encode the image prompt. |
|
|
vision_end_token_id (`int`, *optional*, defaults to 151653): |
|
|
The end token index to encode the image prompt. |
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
|
Whether to tie the word embeddings. |
|
|
|
|
|
```python |
|
|
>>> from transformers import Qwen3VLMoeForConditionalGeneration, Qwen3VLMoeConfig |
|
|
|
|
|
>>> # Initializing a Qwen3-VL-MOE style configuration |
|
|
>>> configuration = Qwen3VLMoeConfig() |
|
|
|
|
|
>>> # Initializing a model from the Qwen3-VL-30B-A3B style configuration |
|
|
>>> model = Qwen3VLMoeForConditionalGeneration(configuration) |
|
|
|
|
|
>>> # Accessing the model configuration |
|
|
>>> configuration = model.config |
|
|
```""" |
|
|
|
|
|
model_type = "rwkv07b_moe" |
|
|
sub_configs = {"vision_config": Qwen3VLMoeVisionConfig, "text_config": Qwen3VLMoeTextConfig} |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
text_config=None, |
|
|
vision_config=None, |
|
|
image_token_id=151655, |
|
|
video_token_id=151656, |
|
|
vision_start_token_id=151652, |
|
|
vision_end_token_id=151653, |
|
|
tie_word_embeddings=False, |
|
|
**kwargs, |
|
|
): |
|
|
if isinstance(vision_config, dict): |
|
|
self.vision_config = self.sub_configs["vision_config"](**vision_config) |
|
|
elif vision_config is None: |
|
|
self.vision_config = self.sub_configs["vision_config"]() |
|
|
|
|
|
if isinstance(text_config, dict): |
|
|
self.text_config = self.sub_configs["text_config"](**text_config) |
|
|
elif text_config is None: |
|
|
self.text_config = self.sub_configs["text_config"]() |
|
|
|
|
|
self.image_token_id = image_token_id |
|
|
self.video_token_id = video_token_id |
|
|
self.vision_start_token_id = vision_start_token_id |
|
|
self.vision_end_token_id = vision_end_token_id |
|
|
super().__init__(**kwargs, tie_word_embeddings=tie_word_embeddings) |
|
|
|
|
|
|
|
|
__all__ = ["Qwen3VLMoeConfig", "Qwen3VLMoeTextConfig"] |