Upload 4 files
Browse files- .gitattributes +1 -0
- README.md +9 -0
- app.py +135 -0
- embeddings.txt +3 -0
- requirements.txt +56 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
embeddings.txt filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ## Умный поиск книг
|
| 2 |
+
|
| 3 |
+
## 🦸♂️Команда
|
| 4 |
+
1. [Валерия](https://github.com/valeri2393)
|
| 5 |
+
2. [Сауле]([SauleBis](https://github.com/SauleBis))
|
| 6 |
+
3. [Савр](https://github.com/SavrOverSide)
|
| 7 |
+
|
| 8 |
+
## 🎯 Задача
|
| 9 |
+
собрать выборку из не менее, чем 5000 аннотаций c [сайта](https://www.biblio-globus.ru/category?cid=182&pagenumber=1) и построить систему поиска наиболее подходящих под пользовательский запрос книг.
|
app.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from transformers import AutoTokenizer, AutoModel
|
| 6 |
+
import faiss
|
| 7 |
+
from streamlit.errors import StreamlitAPIException
|
| 8 |
+
import urllib.parse
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
import os
|
| 13 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
| 14 |
+
|
| 15 |
+
# Load model and tokenizer
|
| 16 |
+
model_name = "sentence-transformers/msmarco-distilbert-base-v3"
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 18 |
+
model = AutoModel.from_pretrained(model_name)
|
| 19 |
+
|
| 20 |
+
# Load data
|
| 21 |
+
books = pd.read_csv('data/data_final_version.csv')
|
| 22 |
+
|
| 23 |
+
MAX_LEN = 300
|
| 24 |
+
|
| 25 |
+
def embed_bert_cls(text, model=model, tokenizer=tokenizer):
|
| 26 |
+
t = tokenizer(text,
|
| 27 |
+
padding=True,
|
| 28 |
+
truncation=True,
|
| 29 |
+
return_tensors='pt',
|
| 30 |
+
max_length=MAX_LEN)
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
|
| 33 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
| 34 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
| 35 |
+
return embeddings[0].cpu().squeeze()
|
| 36 |
+
|
| 37 |
+
# Load embeddings
|
| 38 |
+
embeddings = np.loadtxt('embeddings.txt')
|
| 39 |
+
embeddings_tensor = [torch.tensor(embedding) for embedding in embeddings]
|
| 40 |
+
|
| 41 |
+
# Create Faiss index
|
| 42 |
+
embeddings_matrix = np.stack(embeddings)
|
| 43 |
+
index = faiss.IndexFlatIP(embeddings_matrix.shape[1])
|
| 44 |
+
index.add(embeddings_matrix)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# CSS стили для заднего фона
|
| 48 |
+
background_image = """
|
| 49 |
+
<style>
|
| 50 |
+
.stApp {
|
| 51 |
+
background-image: url("https://img.freepik.com/premium-photo/blur-image-book_9563-1100.jpg");
|
| 52 |
+
background-size: cover;
|
| 53 |
+
background-position: center;
|
| 54 |
+
background-repeat: no-repeat;
|
| 55 |
+
}
|
| 56 |
+
</style>
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
# Вставляем CSS стили в приложение Streamlit
|
| 60 |
+
st.markdown(background_image, unsafe_allow_html=True)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# Вставляем CSS стили для окошка с прозрачным фоном
|
| 64 |
+
transparent_title = """
|
| 65 |
+
<style>
|
| 66 |
+
.transparent-title {
|
| 67 |
+
background-color: rgba(255, 255, 255, 0.7);
|
| 68 |
+
padding: 10px;
|
| 69 |
+
border-radius: 5px;
|
| 70 |
+
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
|
| 71 |
+
}
|
| 72 |
+
</style>
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
transparent_box = """
|
| 76 |
+
<style>
|
| 77 |
+
.transparent-box {
|
| 78 |
+
background-color: rgba(255, 255, 255, 0.7);
|
| 79 |
+
padding: 10px;
|
| 80 |
+
border-radius: 5px;
|
| 81 |
+
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
|
| 82 |
+
}
|
| 83 |
+
</style>
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
# Вставляем CSS стили в приложение Streamlit
|
| 87 |
+
st.markdown(transparent_title, unsafe_allow_html=True)
|
| 88 |
+
st.markdown(transparent_box, unsafe_allow_html=True)
|
| 89 |
+
|
| 90 |
+
# Streamlit interface
|
| 91 |
+
st.markdown('<h1 class="transparent-title">🎓📚Приложение для рекомендаций книг📚🎓</h1>', unsafe_allow_html=True)
|
| 92 |
+
|
| 93 |
+
# Далее ваш код Streamlit
|
| 94 |
+
text = st.text_input('Введите ваш запрос для поиска книг:')
|
| 95 |
+
num_results = st.number_input('Количество результатов:', min_value=1, max_value=20, value=3)
|
| 96 |
+
recommend_button = st.button('Получить рекомендации')
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
if text and recommend_button: # Check if the user entered text and clicked the button
|
| 100 |
+
|
| 101 |
+
# Embed the query and search for nearest vectors using Faiss
|
| 102 |
+
query_embedding = embed_bert_cls(text)
|
| 103 |
+
query_embedding = query_embedding.numpy().astype('float32')
|
| 104 |
+
_, indices = index.search(np.expand_dims(query_embedding, axis=0), num_results)
|
| 105 |
+
|
| 106 |
+
st.subheader('Рекомендации по вашему запросу:')
|
| 107 |
+
for i in indices[0]:
|
| 108 |
+
recommended_embedding = embeddings_tensor[i].numpy() # Vector of the recommended book
|
| 109 |
+
similarity = np.dot(query_embedding, recommended_embedding) / (np.linalg.norm(query_embedding) * np.linalg.norm(recommended_embedding)) # Cosine similarity
|
| 110 |
+
similarity_percent = similarity * 100
|
| 111 |
+
|
| 112 |
+
col1, col2 = st.columns([1, 3])
|
| 113 |
+
with col1:
|
| 114 |
+
image_url = books['image_url'][i]
|
| 115 |
+
if pd.isna(image_url) or not image_url or image_url.strip() == '':
|
| 116 |
+
st.write("Обложка не найдена")
|
| 117 |
+
else:
|
| 118 |
+
try:
|
| 119 |
+
st.image(image_url, use_column_width=True)
|
| 120 |
+
except Exception as e:
|
| 121 |
+
st.write("Обложка не найдена")
|
| 122 |
+
st.write(e)
|
| 123 |
+
|
| 124 |
+
with col2:
|
| 125 |
+
# Выводим информацию о книге на прозрачном фоне
|
| 126 |
+
st.markdown(f"""
|
| 127 |
+
<div class="transparent-box">
|
| 128 |
+
<p><b>Название книги:</b> {books['title'][i]}</p>
|
| 129 |
+
<p><b>Автор:</b> {books['author'][i]}</p>
|
| 130 |
+
<p><b>Описание:</b>{books['annotation'][i]}")
|
| 131 |
+
<p><b>Оценка сходства:</b> {similarity_percent:.2f}%</p>
|
| 132 |
+
</div>
|
| 133 |
+
""", unsafe_allow_html=True)
|
| 134 |
+
|
| 135 |
+
st.write("---")
|
embeddings.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72371c6be3b7ad73af2f3dcc03c00c1f86d1b341385b0778156f8b8a83d3977c
|
| 3 |
+
size 30783658
|
requirements.txt
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
altair==5.3.0
|
| 2 |
+
attrs==23.2.0
|
| 3 |
+
blinker==1.8.2
|
| 4 |
+
cachetools==5.3.3
|
| 5 |
+
certifi==2024.7.4
|
| 6 |
+
charset-normalizer==3.3.2
|
| 7 |
+
click==8.1.7
|
| 8 |
+
faiss-cpu==1.8.0.post1
|
| 9 |
+
filelock==3.15.4
|
| 10 |
+
fsspec==2024.6.1
|
| 11 |
+
gitdb==4.0.11
|
| 12 |
+
GitPython==3.1.43
|
| 13 |
+
huggingface-hub==0.23.4
|
| 14 |
+
idna==3.7
|
| 15 |
+
Jinja2==3.1.4
|
| 16 |
+
jsonschema==4.23.0
|
| 17 |
+
jsonschema-specifications==2023.12.1
|
| 18 |
+
markdown-it-py==3.0.0
|
| 19 |
+
MarkupSafe==2.1.5
|
| 20 |
+
mdurl==0.1.2
|
| 21 |
+
mpmath==1.3.0
|
| 22 |
+
networkx==3.3
|
| 23 |
+
numpy==1.26.4
|
| 24 |
+
packaging==24.1
|
| 25 |
+
pandas==2.2.2
|
| 26 |
+
pillow==10.4.0
|
| 27 |
+
protobuf==5.27.2
|
| 28 |
+
pyarrow==16.1.0
|
| 29 |
+
pydeck==0.9.1
|
| 30 |
+
Pygments==2.18.0
|
| 31 |
+
python-dateutil==2.9.0.post0
|
| 32 |
+
pytz==2024.1
|
| 33 |
+
PyYAML==6.0.1
|
| 34 |
+
referencing==0.35.1
|
| 35 |
+
regex==2024.5.15
|
| 36 |
+
requests==2.32.3
|
| 37 |
+
rich==13.7.1
|
| 38 |
+
rpds-py==0.19.0
|
| 39 |
+
safetensors==0.4.3
|
| 40 |
+
six==1.16.0
|
| 41 |
+
smmap==5.0.1
|
| 42 |
+
streamlit==1.36.0
|
| 43 |
+
sympy==1.13.0
|
| 44 |
+
tenacity==8.5.0
|
| 45 |
+
tokenizers==0.19.1
|
| 46 |
+
toml==0.10.2
|
| 47 |
+
toolz==0.12.1
|
| 48 |
+
torch==2.3.1
|
| 49 |
+
torchaudio==2.3.1
|
| 50 |
+
torchvision==0.18.1
|
| 51 |
+
tornado==6.4.1
|
| 52 |
+
tqdm==4.66.4
|
| 53 |
+
transformers==4.42.4
|
| 54 |
+
typing_extensions==4.12.2
|
| 55 |
+
tzdata==2024.1
|
| 56 |
+
urllib3==2.2.2
|