File size: 6,240 Bytes
815d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
widget:
- text: Fibonacci Intelligence 
  parameters:
    negative_prompt: fibonacci ai
  output:
    url: images/IMG_20250104_152637_289-GBCTSioQi-transformed-transformed.png
license: apache-2.0
tags:
- gemma3n
- GGUF
- conversational
- product-specialized-ai
- llama-cpp
- RealRobot
- lmstudio
- fibonacciai
- chatbot
- persian
- iran
- text-generation
- jan
- ollama
datasets:
- fibonacciai/RealRobot-chatbot-v2
- fibonacciai/Realrobot-chatbot
language:
- en
- fa
base_model:
- google/gemma-3n-E4B-it
new_version: fibonacciai/fibonacci-2-9b
pipeline_tag: question-answering
---
![baner1](https://cdn.imgurl.ir/uploads/i061213_gemma-3n-future-2.gif)
https://youtu.be/yS3aX3_w3T0
# RealRobot_chatbot_llm (GGUF) - The Blueprint for Specialized Product AI
![1](https://cdn.imgurl.ir/uploads/s501697_RealRobot_chatbot_llm1.jpg)
This repository contains the highly optimized GGUF (quantized) version of the `RealRobot_chatbot_llm` model, developed by **fibonacciai**.

Our model is built on the efficient **Gemma3n architecture** and is fine-tuned on a proprietary dataset from the RealRobot product catalog. This model serves as the **proof-of-concept** for our core value proposition: the ability to rapidly create accurate, cost-effective, and deployable specialized language models for any business, based on their own product data.
![baner1](https://cdn.imgurl.ir/uploads/c466728_1_YX_BOaLkFhVfP9S3979P_Q.gif)

## 📈 Key Advantages and Value Proposition

The `RealRobot_chatbot_llm` demonstrates the unique benefits of our specialization strategy:
![لوگوی مدل](https://cdn.imgurl.ir/uploads/f430581_RealRobot_chatbot_llm2.jpg)
* **Hyper-Specialization & Accuracy:** The model is trained exclusively on product data, eliminating the noise and inaccuracy of general-purpose models. It provides authoritative, relevant answers directly related to the RealRobot product line.
* **Scalable Business Model:** The entire process—from dataset creation to GGUF deployment—is a repeatable blueprint. **This exact specialized AI solution can be replicated for any company or platform** that wishes to embed a highly accurate, product-aware chatbot.
* **Cost & Resource Efficiency:** Leveraging the small and optimized Gemma 3n architecture, combined with GGUF quantization, ensures maximum performance and minimal computational cost. This makes on-premise, real-time deployment economically viable for enterprises of all sizes.
* **Optimal Deployment:** The GGUF format enables seamless integration into embedded systems, mobile applications, and local servers using industry-standard tools like `llama.cpp`.

## 📝 Model & Architecture Details: Gemma 3n

The `RealRobot_chatbot_llm` is built upon the cutting-edge **Gemma 3n** architecture, a powerful, open model family from Google, optimized for size and speed.

| Feature | Description |
| :--- | :--- |
| **Base Architecture** | Google's Gemma 3n (Optimized for size and speed) |
| **Efficiency Focus** | Designed for accelerated performance on local devices (CPU/Edge) |
| **Model Size** | Approx. 4 Billion Parameters (Quantized) |
| **Fine-tuning Base** | `gemma-3n-e2b-it-bnb-4bit` |
![2](https://cdn.imgurl.ir/uploads/f430581_RealRobot_chatbot_llm2.jpg)
## 📊 Training Data: RealRobot Product Catalog

This model's high accuracy is a direct result of being fine-tuned on a single-domain, high-quality dataset:

* **Dataset Source:** [`fibonacciai/RealRobot-chatbot-v2`](https://huggingface.co/datasets/fibonacciai/RealRobot-chatbot-v2)
* **Content Focus:** The dataset is composed of conversational data and information derived directly from the **RealRobot website product documentation and support materials**.
* **Purpose:** This data ensures the chatbot can accurately and effectively answer customer questions about product features, usage, and troubleshooting specific to the RealRobot offerings.
![3](https://cdn.imgurl.ir/uploads/s27401_RealRobot_chatbot_llm3.jpg)
## ⚙️ How to Use (GGUF)

This GGUF model can be run using various clients, with `llama.cpp` being the most common.

### 1. Using `llama.cpp` (Terminal)

1.  **Clone and build `llama.cpp`:**
    ```bash
    git clone [https://github.com/ggerganov/llama.cpp](https://github.com/ggerganov/llama.cpp)
    cd llama.cpp
    make
    ```

2.  **Run the model:**
    Use the `--hf-repo` flag to automatically download the model file. Replace `[YOUR_GGUF_FILENAME.gguf]` with the actual filename (e.g., `RealRobot_chatbot_llm-Q8_0.gguf`).

    ```bash
    ./main --hf-repo fibonacciai/RealRobot_chatbot_llm \
           --hf-file [YOUR_GGUF_FILENAME.gguf] \
           -n 256 \
           -p "<start_of_turn>user\nWhat are the main features of the RealRobot X1 model?<end_of_turn>\n<start_of_turn>model\n"
    ```

### 2. Using `llama-cpp-python` (Python)

1.  **Install the library:**
    ```bash
    pip install llama-cpp-python
    ```

2.  **Run in Python:**
    ```python
    from llama_cpp import Llama

    GGUF_FILE = "[YOUR_GGUF_FILENAME.gguf]" 
    REPO_ID = "fibonacciai/RealRobot_chatbot_llm"

    llm = Llama.from_pretrained(
        repo_id=REPO_ID,
        filename=GGUF_FILE,
        n_ctx=2048,
        chat_format="gemma",  # Use the gemma chat format
        verbose=False
    )

    messages = [
        {"role": "user", "content": "How do I troubleshoot error code X-404 on the platform?"},
    ]

    response = llm.create_chat_completion(messages)
    print(response['choices'][0]['message']['content'])
    ```

## ⚠️ Limitations and Bias

* **Domain Focus:** The model is highly specialized. It excels in answering questions about RealRobot products but will have limited performance on general knowledge outside this domain.
* **Output Verification:** The model's output should always be verified by human oversight before being used in critical customer support or business processes.

## 📜 License

The model is licensed under the **Apache 2.0** license.

## 📞 Contact for Specialized AI Solutions

For specialized inquiries, collaboration, or to develop a custom product AI for your business using this scalable blueprint, please contact:
**[info@realrobot.ir]**
**[www.RealRobot.ir]**


![4](https://cdn.imgurl.ir/uploads/d77014_RealRobot_chatbot_llm4.jpg)