File size: 11,863 Bytes
29006c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
"""
Universal CodeAct Interactive Demo
Supports: CUDA (NVIDIA), MLX (Apple Silicon), CPU
Auto-detects best available backend
"""
import re
import sys
import os
import argparse
from io import StringIO

# ============= BACKEND DETECTION =============
def detect_backend():
    """Auto-detect the best available backend"""
    # Check for MLX (Apple Silicon)
    try:
        import mlx.core as mx
        return "mlx"
    except ImportError:
        pass

    # Check for CUDA
    try:
        import torch
        if torch.cuda.is_available():
            return "cuda"
    except ImportError:
        pass

    # Check for MPS (Apple Metal via PyTorch)
    try:
        import torch
        if torch.backends.mps.is_available():
            return "mps"
    except:
        pass

    # Fallback to CPU
    return "cpu"

# ============= MLX BACKEND =============
class MLXBackend:
    def __init__(self, model_name, adapter_path=None):
        from mlx_lm import load, generate
        self.generate_fn = generate

        if adapter_path and os.path.exists(adapter_path):
            print(f"Loading MLX model with adapter: {adapter_path}")
            self.model, self.tokenizer = load(model_name, adapter_path=adapter_path)
        else:
            print(f"Loading MLX model: {model_name}")
            self.model, self.tokenizer = load(model_name)

    def generate(self, prompt, max_tokens=400):
        return self.generate_fn(
            self.model,
            self.tokenizer,
            prompt=prompt,
            max_tokens=max_tokens,
            verbose=False
        )

# ============= PYTORCH BACKEND (CUDA/MPS/CPU) =============
class PyTorchBackend:
    def __init__(self, model_name, device="auto", adapter_path=None):
        import torch
        from transformers import AutoModelForCausalLM, AutoTokenizer

        # Determine device
        if device == "auto":
            if torch.cuda.is_available():
                self.device = "cuda"
            elif torch.backends.mps.is_available():
                self.device = "mps"
            else:
                self.device = "cpu"
        else:
            self.device = device

        print(f"Loading PyTorch model on {self.device}: {model_name}")

        self.tokenizer = AutoTokenizer.from_pretrained(
            model_name,
            trust_remote_code=True
        )

        # Load model with appropriate dtype
        dtype = torch.float16 if self.device in ["cuda", "mps"] else torch.float32

        self.model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=dtype,
            device_map=self.device if self.device == "cuda" else None,
            trust_remote_code=True,
            low_cpu_mem_usage=True
        )

        if self.device != "cuda":
            self.model = self.model.to(self.device)

        # Load LoRA adapter if available
        if adapter_path and os.path.exists(adapter_path):
            try:
                from peft import PeftModel
                print(f"Loading LoRA adapter: {adapter_path}")
                self.model = PeftModel.from_pretrained(self.model, adapter_path)
            except ImportError:
                print("Warning: peft not installed, skipping adapter")

    def generate(self, prompt, max_tokens=400):
        import torch

        inputs = self.tokenizer(prompt, return_tensors="pt")
        inputs = {k: v.to(self.device) for k, v in inputs.items()}

        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=max_tokens,
                temperature=0.7,
                do_sample=True,
                top_p=0.95,
                pad_token_id=self.tokenizer.pad_token_id or self.tokenizer.eos_token_id
            )

        response = self.tokenizer.decode(
            outputs[0][len(inputs['input_ids'][0]):],
            skip_special_tokens=True
        )
        return response

# ============= CODE EXECUTION =============
def execute_code(code):
    """Execute Python code and capture output"""
    stdout_buffer = StringIO()
    stderr_buffer = StringIO()
    old_stdout, old_stderr = sys.stdout, sys.stderr

    try:
        sys.stdout = stdout_buffer
        sys.stderr = stderr_buffer
        namespace = {}
        exec(code, namespace)
        output = stdout_buffer.getvalue()
        errors = stderr_buffer.getvalue()
        return {"success": True, "output": output.strip() or None, "error": errors.strip() or None}
    except Exception as e:
        return {"success": False, "output": None, "error": str(e)}
    finally:
        sys.stdout, sys.stderr = old_stdout, old_stderr

# ============= MAIN DEMO CLASS =============
class CodeActDemo:
    def __init__(self, backend="auto", model_name=None, adapter_path=None):
        # Default model
        if model_name is None:
            model_name = "Qwen/Qwen2.5-3B"

        # Default adapter paths
        if adapter_path is None:
            adapter_path = "./models/codeact-mlx-qwen2.5-3b"

        # Auto-detect or use specified backend
        if backend == "auto":
            backend = detect_backend()

        print(f"\n{'='*60}")
        print(f"CodeAct Interactive Demo")
        print(f"Backend: {backend.upper()}")
        print(f"{'='*60}\n")

        self.backend_name = backend

        # Initialize backend
        if backend == "mlx":
            self.backend = MLXBackend(model_name, adapter_path)
        else:
            self.backend = PyTorchBackend(model_name, device=backend, adapter_path=adapter_path)

        self.tokenizer = self.backend.tokenizer if hasattr(self.backend, 'tokenizer') else None
        self.conversation_history = []

        self.system_prompt = """You are a helpful AI assistant that executes Python code.
Use these tags:
- <thought>reasoning</thought> for thinking
- <execute>code</execute> for code
- <solution>answer</solution> for final answer
- <feedback>assessment</feedback> for self-evaluation"""

        print("Model loaded successfully!\n")

    def parse_response(self, response):
        """Extract tags from response"""
        parts = {'thought': None, 'execute': None, 'solution': None, 'feedback': None}
        for tag in parts:
            match = re.search(f'<{tag}>(.*?)</{tag}>', response, re.DOTALL)
            if match:
                parts[tag] = match.group(1).strip()
        return parts

    def build_prompt(self, user_input, execution_result=None):
        """Build prompt with conversation history"""
        messages = [{"role": "system", "content": self.system_prompt}]
        messages.extend(self.conversation_history)

        if execution_result:
            content = f"Previous execution result: {execution_result}\n\nUser: {user_input}"
        else:
            content = user_input

        messages.append({"role": "user", "content": content})

        # Apply chat template
        if hasattr(self.backend, 'tokenizer') and hasattr(self.backend.tokenizer, 'apply_chat_template'):
            return self.backend.tokenizer.apply_chat_template(
                messages, tokenize=False, add_generation_prompt=True
            )
        else:
            return "\n".join([f"{m['role']}: {m['content']}" for m in messages]) + "\nassistant:"

    def chat(self, user_input, execution_result=None):
        """Generate response"""
        prompt = self.build_prompt(user_input, execution_result)
        return self.backend.generate(prompt, max_tokens=400)

    def run(self):
        """Run interactive loop"""
        print("="*60)
        print(f"Running on: {self.backend_name.upper()}")
        print("="*60)
        print("\nCommands:")
        print("  - Type your question and press Enter")
        print("  - 'clear' - Clear conversation history")
        print("  - 'quit' - Exit")
        print("="*60 + "\n")

        last_execution_result = None

        while True:
            try:
                user_input = input("\nYou: ").strip()

                if not user_input:
                    continue

                if user_input.lower() in ['quit', 'exit', 'q']:
                    print("\nGoodbye!")
                    break

                if user_input.lower() == 'clear':
                    self.conversation_history = []
                    last_execution_result = None
                    print("Conversation cleared")
                    continue

                print("\n[Generating...]", end=" ", flush=True)
                response = self.chat(user_input, last_execution_result)
                print("Done!\n")

                parts = self.parse_response(response)

                if parts['thought']:
                    print(f"Thought:\n{parts['thought']}\n")

                if parts['execute']:
                    print(f"Code:\n```python\n{parts['execute']}\n```\n")
                    print("Executing...\n")

                    result = execute_code(parts['execute'])

                    if result["success"]:
                        if result["output"]:
                            print(f"Output:\n{result['output']}")
                            last_execution_result = f"Output: {result['output']}"

                            print("\n" + "-"*40)
                            feedback = input("Is this correct? (y/n/skip): ").strip().lower()

                            if feedback == 'n':
                                print("\nMarked as incorrect")
                                last_execution_result += " [INCORRECT]"
                            elif feedback == 'y':
                                print("\nCorrect!")
                                last_execution_result = None
                            else:
                                last_execution_result = None

                            self.conversation_history.append({"role": "user", "content": user_input})
                            self.conversation_history.append({"role": "assistant", "content": response})
                        else:
                            print("Code executed (no output)")
                            last_execution_result = None

                        if result["error"]:
                            print(f"Warnings: {result['error']}")
                    else:
                        print(f"Error: {result['error']}")
                        last_execution_result = f"Error: {result['error']}"

                if parts['solution']:
                    print(f"\nSolution:\n{parts['solution']}")

                if parts['feedback']:
                    print(f"\nFeedback:\n{parts['feedback']}")

                if not any(parts.values()):
                    print(f"Response:\n{response[:500]}")

                # Limit history
                if len(self.conversation_history) > 10:
                    self.conversation_history = self.conversation_history[-10:]

                print("\n" + "="*60)

            except KeyboardInterrupt:
                print("\n\nInterrupted. Goodbye!")
                break
            except Exception as e:
                print(f"\nError: {e}")
                import traceback
                traceback.print_exc()

def main():
    parser = argparse.ArgumentParser(description="CodeAct Interactive Demo")
    parser.add_argument("--backend", choices=["auto", "cuda", "mps", "mlx", "cpu"],
                       default="auto", help="Backend to use (default: auto)")
    parser.add_argument("--model", type=str, default="Qwen/Qwen2.5-3B",
                       help="Model name or path")
    parser.add_argument("--adapter", type=str, default=None,
                       help="Path to LoRA adapter")

    args = parser.parse_args()

    demo = CodeActDemo(
        backend=args.backend,
        model_name=args.model,
        adapter_path=args.adapter
    )
    demo.run()

if __name__ == "__main__":
    main()