|
|
import math |
|
|
import warnings |
|
|
from collections.abc import Callable |
|
|
from typing import Optional |
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from torch import nn |
|
|
|
|
|
from transformers import initialization as init |
|
|
from transformers.cache_utils import Cache |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_layers import GenericForSequenceClassification, GenericForTokenClassification |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import logging |
|
|
from transformers.models.deepseek_v3.modeling_deepseek_v3 import ( |
|
|
DeepseekV3Attention, |
|
|
DeepseekV3DecoderLayer, |
|
|
DeepseekV3ForCausalLM, |
|
|
DeepseekV3MLP, |
|
|
DeepseekV3Model, |
|
|
DeepseekV3MoE, |
|
|
DeepseekV3PreTrainedModel, |
|
|
DeepseekV3RMSNorm, |
|
|
DeepseekV3RotaryEmbedding, |
|
|
apply_rotary_pos_emb_interleave, |
|
|
yarn_get_mscale, |
|
|
) |
|
|
from transformers.models.llama.modeling_llama import ( |
|
|
apply_rotary_pos_emb, |
|
|
eager_attention_forward, |
|
|
) |
|
|
from configuration_deepseek_v32 import DeepseekV32Config |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class DeepseekV32RMSNorm(DeepseekV3RMSNorm): |
|
|
pass |
|
|
|
|
|
|
|
|
class DeepseekV32RotaryEmbedding(DeepseekV3RotaryEmbedding): |
|
|
pass |
|
|
|
|
|
|
|
|
class DeepseekV32MLP(DeepseekV3MLP): |
|
|
pass |
|
|
|
|
|
|
|
|
class DeepseekV32MoE(DeepseekV3MoE): |
|
|
pass |
|
|
|
|
|
|
|
|
class DeepseekV32SparseAttention(nn.Module): |
|
|
""" |
|
|
DeepSeek V3.2 sparse attention mechanism with indexer. |
|
|
|
|
|
This implements the native sparse attention from DeepSeek V3.2 which uses |
|
|
an indexer to select top-k tokens for attention computation, making it |
|
|
more efficient for long sequences. |
|
|
""" |
|
|
|
|
|
def __init__(self, config: DeepseekV32Config, layer_idx: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.num_heads = config.num_attention_heads |
|
|
|
|
|
self.q_lora_rank = config.q_lora_rank |
|
|
self.qk_rope_head_dim = config.qk_rope_head_dim |
|
|
self.kv_lora_rank = config.kv_lora_rank |
|
|
self.v_head_dim = config.v_head_dim |
|
|
self.qk_nope_head_dim = config.qk_nope_head_dim |
|
|
self.qk_head_dim = config.qk_head_dim |
|
|
self.index_topk = config.index_topk |
|
|
|
|
|
self.is_causal = True |
|
|
|
|
|
|
|
|
if self.q_lora_rank is None: |
|
|
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.qk_head_dim, bias=False) |
|
|
else: |
|
|
self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=config.attention_bias) |
|
|
self.q_a_layernorm = DeepseekV32RMSNorm(config.q_lora_rank) |
|
|
self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False) |
|
|
|
|
|
|
|
|
self.kv_a_proj_with_mqa = nn.Linear( |
|
|
config.hidden_size, |
|
|
self.kv_lora_rank + self.qk_rope_head_dim, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
self.kv_a_layernorm = DeepseekV32RMSNorm(self.kv_lora_rank) |
|
|
self.kv_b_proj = nn.Linear( |
|
|
self.kv_lora_rank, |
|
|
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim), |
|
|
bias=False, |
|
|
) |
|
|
|
|
|
|
|
|
self.o_proj = nn.Linear( |
|
|
self.num_heads * self.v_head_dim, |
|
|
config.hidden_size, |
|
|
bias=config.attention_bias, |
|
|
) |
|
|
|
|
|
|
|
|
self.wq_b = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False) |
|
|
self.wk = nn.Linear(config.hidden_size, self.qk_head_dim, bias=config.attention_bias) |
|
|
self.k_norm = DeepseekV32RMSNorm(self.qk_head_dim) |
|
|
self.weights_proj = nn.Linear(config.hidden_size, self.num_heads, bias=False) |
|
|
|
|
|
self.scaling = self.qk_head_dim ** (-0.5) |
|
|
if self.config.rope_parameters.get("rope_type", "default") != "default": |
|
|
mscale_all_dim = self.config.rope_parameters.get("mscale_all_dim", 0) |
|
|
scaling_factor = self.config.rope_parameters["factor"] |
|
|
if mscale_all_dim: |
|
|
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim) |
|
|
self.scaling = self.scaling * mscale * mscale |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_values: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
|
batch_size, seq_length = hidden_states.shape[:-1] |
|
|
|
|
|
|
|
|
|
|
|
if self.training or seq_length <= self.index_topk: |
|
|
warnings.warn( |
|
|
"DeepSeek V3.2 sparse attention is not fully implemented in this version. " |
|
|
"Falling back to standard attention. For production use, please use vLLM or " |
|
|
"other optimized inference engines.", |
|
|
UserWarning, |
|
|
) |
|
|
return self._standard_attention( |
|
|
hidden_states, position_embeddings, attention_mask, past_key_values, cache_position, **kwargs |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
return self._standard_attention( |
|
|
hidden_states, position_embeddings, attention_mask, past_key_values, cache_position, **kwargs |
|
|
) |
|
|
|
|
|
def _standard_attention( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_values: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
|
"""Standard attention fallback (same as DeepSeek V3)""" |
|
|
batch_size, seq_length = hidden_states.shape[:-1] |
|
|
query_shape = (batch_size, seq_length, -1, self.qk_head_dim) |
|
|
key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim) |
|
|
|
|
|
if self.q_lora_rank is None: |
|
|
q_states = self.q_proj(hidden_states) |
|
|
else: |
|
|
q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) |
|
|
q_states = q_states.view(query_shape).transpose(1, 2) |
|
|
q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) |
|
|
|
|
|
compressed_kv = self.kv_a_proj_with_mqa(hidden_states) |
|
|
k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) |
|
|
|
|
|
k_pass = self.kv_b_proj(self.kv_a_layernorm(k_pass)).view(key_shape).transpose(1, 2) |
|
|
k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1) |
|
|
|
|
|
k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
if self.config.rope_interleave: |
|
|
q_rot, k_rot = apply_rotary_pos_emb_interleave(q_rot, k_rot, cos, sin) |
|
|
else: |
|
|
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin) |
|
|
k_rot = k_rot.expand(*k_pass.shape[:-1], -1) |
|
|
|
|
|
query_states = torch.cat((q_pass, q_rot), dim=-1) |
|
|
key_states = torch.cat((k_pass, k_rot), dim=-1) |
|
|
|
|
|
if past_key_values is not None: |
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim: |
|
|
value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim]) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim: |
|
|
attn_output = attn_output[:, :, :, : self.v_head_dim] |
|
|
|
|
|
attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class DeepseekV32DecoderLayer(nn.Module): |
|
|
def __init__(self, config: DeepseekV32Config, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
|
|
|
self.self_attn = DeepseekV32SparseAttention(config=config, layer_idx=layer_idx) |
|
|
|
|
|
if layer_idx >= config.first_k_dense_replace: |
|
|
self.mlp = DeepseekV32MoE(config) |
|
|
else: |
|
|
self.mlp = DeepseekV32MLP(config) |
|
|
|
|
|
self.input_layernorm = DeepseekV32RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = DeepseekV32RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> torch.Tensor: |
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
position_embeddings=position_embeddings, |
|
|
attention_mask=attention_mask, |
|
|
past_key_values=past_key_values, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class DeepseekV32PreTrainedModel(DeepseekV3PreTrainedModel): |
|
|
config_class = DeepseekV32Config |
|
|
_can_compile_fullgraph = False |
|
|
_keep_in_fp32_modules_strict = ["e_score_correction_bias"] |
|
|
|
|
|
|
|
|
class DeepseekV32Model(DeepseekV3Model): |
|
|
""" |
|
|
DeepSeek V3.2 Model with native sparse attention. |
|
|
|
|
|
This model extends DeepSeek V3 with an efficient sparse attention mechanism |
|
|
that uses an indexer to select top-k tokens for attention computation. |
|
|
""" |
|
|
config_class = DeepseekV32Config |
|
|
_keys_to_ignore_on_load_unexpected = [r"model\.layers\.61.*"] |
|
|
|
|
|
def __init__(self, config: DeepseekV32Config): |
|
|
|
|
|
DeepseekV3PreTrainedModel.__init__(self, config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
|
|
self.layers = nn.ModuleList( |
|
|
[DeepseekV32DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = DeepseekV32RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = DeepseekV32RotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
|
|
|
class DeepseekV32ForCausalLM(DeepseekV3ForCausalLM): |
|
|
""" |
|
|
DeepSeek V3.2 Model for causal language modeling with sparse attention. |
|
|
""" |
|
|
config_class = DeepseekV32Config |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
def __init__(self, config): |
|
|
super(DeepseekV3ForCausalLM, self).__init__(config) |
|
|
self.model = DeepseekV32Model(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
|
|
|
class DeepseekV32ForSequenceClassification(GenericForSequenceClassification, DeepseekV32PreTrainedModel): |
|
|
pass |
|
|
|
|
|
|
|
|
class DeepseekV32ForTokenClassification(GenericForTokenClassification, DeepseekV32PreTrainedModel): |
|
|
pass |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"DeepseekV32PreTrainedModel", |
|
|
"DeepseekV32Model", |
|
|
"DeepseekV32ForCausalLM", |
|
|
"DeepseekV32ForSequenceClassification", |
|
|
"DeepseekV32ForTokenClassification", |
|
|
] |