import os, sys, traceback from transformers import HubertModel import librosa from torch import nn import torch import json os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" os.environ["PYTORCH_MPS_HIGH_WATERMARK_RATIO"] = "0.0" device=sys.argv[1] n_part = int(sys.argv[2]) i_part = int(sys.argv[3]) if len(sys.argv) == 6: exp_dir = sys.argv[4] version = sys.argv[5] else: i_gpu = sys.argv[4] exp_dir = sys.argv[5] os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu) version = sys.argv[6] import torch import torch.nn.functional as F import soundfile as sf import numpy as np from fairseq import checkpoint_utils #device = "cpu" if torch.cuda.is_available(): device = "cuda" elif torch.backends.mps.is_available(): device = "mps" version_config_paths = [ os.path.join("", "32k.json"), os.path.join("", "40k.json"), os.path.join("", "48k.json"), os.path.join("", "48k_v2.json"), os.path.join("", "40k.json"), os.path.join("", "32k_v2.json"), ] class Config: def __init__(self): self.device = "cuda:0" if torch.cuda.is_available() else "cpu" self.is_half = self.device != "cpu" self.gpu_name = ( torch.cuda.get_device_name(int(self.device.split(":")[-1])) if self.device.startswith("cuda") else None ) self.json_config = self.load_config_json() self.gpu_mem = None self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() def load_config_json(self) -> dict: configs = {} for config_file in version_config_paths: config_path = os.path.join("configs", config_file) with open(config_path, "r") as f: configs[config_file] = json.load(f) return configs def has_mps(self) -> bool: # Check if Metal Performance Shaders are available - for macOS 12.3+. return torch.backends.mps.is_available() def has_xpu(self) -> bool: # Check if XPU is available. return hasattr(torch, "xpu") and torch.xpu.is_available() def set_precision(self, precision): if precision not in ["fp32", "fp16"]: raise ValueError("Invalid precision type. Must be 'fp32' or 'fp16'.") fp16_run_value = precision == "fp16" preprocess_target_version = "3.7" if precision == "fp16" else "3.0" preprocess_path = os.path.join( os.path.dirname(__file__), os.pardir, "" "preprocess.py", ) for config_path in version_config_paths: full_config_path = os.path.join("configs", config_path) try: with open(full_config_path, "r") as f: config = json.load(f) config["train"]["fp16_run"] = fp16_run_value with open(full_config_path, "w") as f: json.dump(config, f, indent=4) except FileNotFoundError: print(f"File not found: {full_config_path}") if os.path.exists(preprocess_path): with open(preprocess_path, "r") as f: preprocess_content = f.read() preprocess_content = preprocess_content.replace( "3.0" if precision == "fp16" else "3.7", preprocess_target_version ) with open(preprocess_path, "w") as f: f.write(preprocess_content) return f"Overwritten preprocess and config.json to use {precision}." def get_precision(self): if not version_config_paths: raise FileNotFoundError("No configuration paths provided.") full_config_path = os.path.join("configs", version_config_paths[0]) try: with open(full_config_path, "r") as f: config = json.load(f) fp16_run_value = config["train"].get("fp16_run", False) precision = "fp16" if fp16_run_value else "fp32" return precision except FileNotFoundError: print(f"File not found: {full_config_path}") return None def device_config(self) -> tuple: if self.device.startswith("cuda"): self.set_cuda_config() elif self.has_mps(): self.device = "mps" self.is_half = False self.set_precision("fp32") else: self.device = "cpu" self.is_half = False self.set_precision("fp32") # Configuration for 6GB GPU memory x_pad, x_query, x_center, x_max = ( (3, 10, 60, 65) if self.is_half else (1, 6, 38, 41) ) if self.gpu_mem is not None and self.gpu_mem <= 4: # Configuration for 5GB GPU memory x_pad, x_query, x_center, x_max = (1, 5, 30, 32) return x_pad, x_query, x_center, x_max def set_cuda_config(self): i_device = int(self.device.split(":")[-1]) self.gpu_name = torch.cuda.get_device_name(i_device) low_end_gpus = ["16", "P40", "P10", "1060", "1070", "1080"] if ( any(gpu in self.gpu_name for gpu in low_end_gpus) and "V100" not in self.gpu_name.upper() ): self.is_half = False self.set_precision("fp32") self.gpu_mem = torch.cuda.get_device_properties(i_device).total_memory // ( 1024**3 ) config = Config() def load_audio(file, sample_rate): try: file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ") audio, sr = sf.read(file) if len(audio.shape) > 1: audio = librosa.to_mono(audio.T) if sr != sample_rate: audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate) except Exception as error: raise RuntimeError(f"An error occurred loading the audio: {error}") return audio.flatten() #HuggingFacePlaceHolder = None class HubertModelWithFinalProj(HubertModel): def __init__(self, config): super().__init__(config) self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size) print(config.hidden_size, config.classifier_proj_size) f = open("%s/extract_f0_feature.log" % exp_dir, "a+") def printt(strr): print(strr) f.write("%s\n" % strr) f.flush() printt(sys.argv) model_path = sys.argv[7] Custom_Embed = False sample_embedding = sys.argv[8] if os.path.split(model_path)[-1] == "Custom" and sample_embedding == "hubert_base": model_path = "hubert_base.pt" Custom_Embed = False elif os.path.split(model_path)[-1] == "Custom" and sample_embedding == "contentvec_base": model_path = "contentvec_base.pt" Custom_Embed = True elif os.path.split(model_path)[-1] == "Custom" and sample_embedding == "hubert_base_japanese": model_path = "japanese_hubert_base.pt" Custom_Embed = True elif os.path.split(model_path)[-1] == "Custom" and sample_embedding == "hubert_large_ll60k": model_path = "hubert_large_ll60k.pt" Custom_Embed = True printt(exp_dir) wavPath = "%s/1_16k_wavs" % exp_dir outPath = ( "%s/3_feature256" % exp_dir if version == "v1" else "%s/3_feature768" % exp_dir if version == "v2" and sample_embedding != "hubert_large_ll60k" else "%s/3_feature1024" % exp_dir ) os.makedirs(outPath, exist_ok=True) # wave must be 16k, hop_size=320 def readwave(wav_path, normalize=False): wav, sr = sf.read(wav_path) assert sr == 16000 if Custom_Embed == False: feats = torch.from_numpy(wav).float() else: feats = torch.from_numpy(load_audio(wav_path, sr)).to(dtype).to(device) if feats.dim() == 2: # double channels feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() if normalize: with torch.no_grad(): feats = F.layer_norm(feats, feats.shape) feats = feats.view(1, -1) return feats # HuBERT model printt("load model(s) from {}".format(model_path)) # if hubert model is exist if os.access(model_path, os.F_OK) == False: printt( "Error: Extracting is shut down because %s does not exist, you may download it from https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main" % model_path ) exit(0) models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([model_path]) if Custom_Embed == False: model = models[0] if device not in ["mps", "cpu"]: model = model.half() elif sample_embedding == "hubert_large_ll60k": dtype = torch.float16 if config.is_half and "cuda" in device else torch.float32 model = HubertModelWithFinalProj.from_pretrained("Custom/").to(dtype).to(device) else: dtype = torch.float16 if config.is_half and "cuda" in device else torch.float32 model = HubertModelWithFinalProj.from_pretrained("Custom/").to(dtype).to(device) model = model.to(device) printt("move model to %s" % device) model.eval() todo = sorted(list(os.listdir(wavPath)))[i_part::n_part] n = max(1, len(todo) // 10) if len(todo) == 0: printt("no-feature-todo") else: printt("all-feature-%s" % len(todo)) for idx, file in enumerate(todo): try: if file.endswith(".wav"): wav_path = "%s/%s" % (wavPath, file) out_path = "%s/%s" % (outPath, file.replace("wav", "npy")) if os.path.exists(out_path): continue feats = readwave(wav_path, normalize=saved_cfg.task.normalize) padding_mask = torch.BoolTensor(feats.shape).fill_(False) inputs = { "source": feats.half().to(device) if device not in ["mps", "cpu"] else feats.to(device), "padding_mask": padding_mask.to(device), "output_layer": 9 if version == "v1" else 12 if sample_embedding != "hubert_large_ll60k" else 24, # layer 9 } with torch.no_grad(): if Custom_Embed == False: logits = model.extract_features(**inputs) feats = ( model.final_proj(logits[0]) if version == "v1" else logits[0] ) elif Custom_Embed == True: feats = model(feats)["last_hidden_state"] feats = ( model.final_proj(feats[0]).unsqueeze(0) if version == "v1" else feats ) feats = feats.squeeze(0).float().cpu().numpy() if np.isnan(feats).sum() == 0: np.save(out_path, feats, allow_pickle=False) else: printt("%s-contains nan" % file) if idx % n == 0: printt("now-%s,all-%s,%s,%s" % (idx, len(todo), file, feats.shape)) except: printt(traceback.format_exc()) printt("all-feature-done")