Delete train_nsf_sim_cache_sid_load_pretrain.py
Browse files
train_nsf_sim_cache_sid_load_pretrain.py
DELETED
|
@@ -1,765 +0,0 @@
|
|
| 1 |
-
import sys, os
|
| 2 |
-
import pickle as p
|
| 3 |
-
now_dir = os.getcwd()
|
| 4 |
-
sys.path.append(os.path.join(now_dir))
|
| 5 |
-
sys.path.append(os.path.join(now_dir, "train"))
|
| 6 |
-
import utils
|
| 7 |
-
Loss_Gen_Per_Epoch = []
|
| 8 |
-
Loss_Disc_Per_Epoch = []
|
| 9 |
-
elapsed_time_record = []
|
| 10 |
-
Lowest_lg = 0
|
| 11 |
-
Lowest_ld = 0
|
| 12 |
-
import datetime
|
| 13 |
-
hps = utils.get_hparams()
|
| 14 |
-
overtrain = hps.overtrain
|
| 15 |
-
experiment_name = hps.name
|
| 16 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = hps.gpus.replace("-", ",")
|
| 17 |
-
n_gpus = len(hps.gpus.split("-"))
|
| 18 |
-
from random import shuffle, randint
|
| 19 |
-
import traceback, json, argparse, itertools, math, torch, pdb
|
| 20 |
-
|
| 21 |
-
torch.backends.cudnn.deterministic = False
|
| 22 |
-
torch.backends.cudnn.benchmark = False
|
| 23 |
-
from torch import nn, optim
|
| 24 |
-
from torch.nn import functional as F
|
| 25 |
-
from torch.utils.data import DataLoader
|
| 26 |
-
from torch.utils.tensorboard import SummaryWriter
|
| 27 |
-
import torch.multiprocessing as mp
|
| 28 |
-
import torch.distributed as dist
|
| 29 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 30 |
-
from torch.cuda.amp import autocast, GradScaler
|
| 31 |
-
from lib.infer_pack import commons
|
| 32 |
-
from time import sleep
|
| 33 |
-
from time import time as ttime
|
| 34 |
-
from data_utils import (
|
| 35 |
-
TextAudioLoaderMultiNSFsid,
|
| 36 |
-
TextAudioLoader,
|
| 37 |
-
TextAudioCollateMultiNSFsid,
|
| 38 |
-
TextAudioCollate,
|
| 39 |
-
DistributedBucketSampler,
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
import csv
|
| 43 |
-
|
| 44 |
-
if hps.version == "v1":
|
| 45 |
-
from lib.infer_pack.models import (
|
| 46 |
-
SynthesizerTrnMs256NSFsid as RVC_Model_f0,
|
| 47 |
-
SynthesizerTrnMs256NSFsid_nono as RVC_Model_nof0,
|
| 48 |
-
MultiPeriodDiscriminator,
|
| 49 |
-
)
|
| 50 |
-
else:
|
| 51 |
-
from lib.infer_pack.models import (
|
| 52 |
-
SynthesizerTrnMs768NSFsid as RVC_Model_f0,
|
| 53 |
-
SynthesizerTrnMs768NSFsid_nono as RVC_Model_nof0,
|
| 54 |
-
MultiPeriodDiscriminatorV2 as MultiPeriodDiscriminator,
|
| 55 |
-
)
|
| 56 |
-
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
| 57 |
-
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
| 58 |
-
from process_ckpt import savee
|
| 59 |
-
|
| 60 |
-
global global_step
|
| 61 |
-
global_step = 0
|
| 62 |
-
|
| 63 |
-
def Calculate_format_elapsed_time(elapsed_time):
|
| 64 |
-
h = int(elapsed_time/3600)
|
| 65 |
-
m,s,ms = int(elapsed_time/60 - h*60), int(elapsed_time%60), round((elapsed_time - int(elapsed_time))*10000)
|
| 66 |
-
return h,m,s,ms
|
| 67 |
-
def right_index(List,Value):
|
| 68 |
-
index = len(List)-1-List[::-1].index(Value)
|
| 69 |
-
return index
|
| 70 |
-
def formating_time(time):
|
| 71 |
-
time = time if time >= 10 else f"0{time}"
|
| 72 |
-
return time
|
| 73 |
-
class EpochRecorder:
|
| 74 |
-
def __init__(self):
|
| 75 |
-
self.last_time = ttime()
|
| 76 |
-
|
| 77 |
-
def record(self):
|
| 78 |
-
now_time = ttime()
|
| 79 |
-
elapsed_time = now_time - self.last_time
|
| 80 |
-
self.last_time = now_time
|
| 81 |
-
elapsed_time_str = str(datetime.timedelta(seconds=elapsed_time))
|
| 82 |
-
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 83 |
-
return f"[{current_time}] | ({elapsed_time_str})"
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def main():
|
| 87 |
-
n_gpus = torch.cuda.device_count()
|
| 88 |
-
if torch.cuda.is_available() == False and torch.backends.mps.is_available() == True:
|
| 89 |
-
n_gpus = 1
|
| 90 |
-
os.environ["MASTER_ADDR"] = "localhost"
|
| 91 |
-
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
| 92 |
-
children = []
|
| 93 |
-
for i in range(n_gpus):
|
| 94 |
-
subproc = mp.Process(
|
| 95 |
-
target=run,
|
| 96 |
-
args=(
|
| 97 |
-
i,
|
| 98 |
-
n_gpus,
|
| 99 |
-
hps,
|
| 100 |
-
),
|
| 101 |
-
)
|
| 102 |
-
children.append(subproc)
|
| 103 |
-
subproc.start()
|
| 104 |
-
for i in range(n_gpus):
|
| 105 |
-
children[i].join()
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
def run(rank, n_gpus, hps):
|
| 110 |
-
global global_step, loss_disc, loss_gen_all, Loss_Disc_Per_Epoch, Loss_Gen_Per_Epoch, elapsed_time_record, best_epoch, best_global_step, Min_for_Single_epoch, prev_best_epoch
|
| 111 |
-
if rank == 0:
|
| 112 |
-
logger = utils.get_logger(hps.model_dir)
|
| 113 |
-
logger.info(hps)
|
| 114 |
-
# utils.check_git_hash(hps.model_dir)
|
| 115 |
-
writer = SummaryWriter(log_dir=hps.model_dir)
|
| 116 |
-
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
| 117 |
-
|
| 118 |
-
dist.init_process_group(
|
| 119 |
-
backend="gloo", init_method="env://", world_size=n_gpus, rank=rank
|
| 120 |
-
)
|
| 121 |
-
torch.manual_seed(hps.train.seed)
|
| 122 |
-
if torch.cuda.is_available():
|
| 123 |
-
torch.cuda.set_device(rank)
|
| 124 |
-
|
| 125 |
-
if hps.if_f0 == 1:
|
| 126 |
-
train_dataset = TextAudioLoaderMultiNSFsid(hps.data.training_files, hps.data)
|
| 127 |
-
else:
|
| 128 |
-
train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
|
| 129 |
-
train_sampler = DistributedBucketSampler(
|
| 130 |
-
train_dataset,
|
| 131 |
-
hps.train.batch_size * n_gpus,
|
| 132 |
-
# [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200,1400], # 16s
|
| 133 |
-
[100, 200, 300, 400, 500, 600, 700, 800, 900], # 16s
|
| 134 |
-
num_replicas=n_gpus,
|
| 135 |
-
rank=rank,
|
| 136 |
-
shuffle=True,
|
| 137 |
-
)
|
| 138 |
-
# It is possible that dataloader's workers are out of shared memory. Please try to raise your shared memory limit.
|
| 139 |
-
# num_workers=8 -> num_workers=4
|
| 140 |
-
if hps.if_f0 == 1:
|
| 141 |
-
collate_fn = TextAudioCollateMultiNSFsid()
|
| 142 |
-
else:
|
| 143 |
-
collate_fn = TextAudioCollate()
|
| 144 |
-
train_loader = DataLoader(
|
| 145 |
-
train_dataset,
|
| 146 |
-
num_workers=4,
|
| 147 |
-
shuffle=False,
|
| 148 |
-
pin_memory=True,
|
| 149 |
-
collate_fn=collate_fn,
|
| 150 |
-
batch_sampler=train_sampler,
|
| 151 |
-
persistent_workers=True,
|
| 152 |
-
prefetch_factor=8,
|
| 153 |
-
)
|
| 154 |
-
if hps.if_f0 == 1:
|
| 155 |
-
net_g = RVC_Model_f0(
|
| 156 |
-
hps.data.filter_length // 2 + 1,
|
| 157 |
-
hps.train.segment_size // hps.data.hop_length,
|
| 158 |
-
**hps.model,
|
| 159 |
-
is_half=hps.train.fp16_run,
|
| 160 |
-
sr=hps.sample_rate,
|
| 161 |
-
)
|
| 162 |
-
else:
|
| 163 |
-
net_g = RVC_Model_nof0(
|
| 164 |
-
hps.data.filter_length // 2 + 1,
|
| 165 |
-
hps.train.segment_size // hps.data.hop_length,
|
| 166 |
-
**hps.model,
|
| 167 |
-
is_half=hps.train.fp16_run,
|
| 168 |
-
)
|
| 169 |
-
if torch.cuda.is_available():
|
| 170 |
-
net_g = net_g.cuda(rank)
|
| 171 |
-
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm)
|
| 172 |
-
if torch.cuda.is_available():
|
| 173 |
-
net_d = net_d.cuda(rank)
|
| 174 |
-
optim_g = torch.optim.AdamW(
|
| 175 |
-
net_g.parameters(),
|
| 176 |
-
hps.train.learning_rate,
|
| 177 |
-
betas=hps.train.betas,
|
| 178 |
-
eps=hps.train.eps,
|
| 179 |
-
)
|
| 180 |
-
optim_d = torch.optim.AdamW(
|
| 181 |
-
net_d.parameters(),
|
| 182 |
-
hps.train.learning_rate,
|
| 183 |
-
betas=hps.train.betas,
|
| 184 |
-
eps=hps.train.eps,
|
| 185 |
-
)
|
| 186 |
-
# net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
| 187 |
-
# net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
| 188 |
-
if torch.cuda.is_available():
|
| 189 |
-
net_g = DDP(net_g, device_ids=[rank])
|
| 190 |
-
net_d = DDP(net_d, device_ids=[rank])
|
| 191 |
-
else:
|
| 192 |
-
net_g = DDP(net_g)
|
| 193 |
-
net_d = DDP(net_d)
|
| 194 |
-
|
| 195 |
-
try: # 如果能加载自动resume
|
| 196 |
-
_, _, _, epoch_str = utils.load_checkpoint(
|
| 197 |
-
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d
|
| 198 |
-
) # D多半加载没事
|
| 199 |
-
if rank == 0:
|
| 200 |
-
logger.info("loaded D")
|
| 201 |
-
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
| 202 |
-
_, _, _, epoch_str = utils.load_checkpoint(
|
| 203 |
-
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g
|
| 204 |
-
)
|
| 205 |
-
global_step = (epoch_str - 1) * len(train_loader)
|
| 206 |
-
# epoch_str = 1
|
| 207 |
-
# global_step = 0
|
| 208 |
-
except: # 如果首次不能加载,加载pretrain
|
| 209 |
-
# traceback.print_exc()
|
| 210 |
-
epoch_str = 1
|
| 211 |
-
global_step = 0
|
| 212 |
-
if hps.pretrainG != "":
|
| 213 |
-
if rank == 0:
|
| 214 |
-
logger.info("loaded pretrained %s" % (hps.pretrainG))
|
| 215 |
-
print(
|
| 216 |
-
net_g.module.load_state_dict(
|
| 217 |
-
torch.load(hps.pretrainG, map_location="cpu")["model"]
|
| 218 |
-
)
|
| 219 |
-
) ##测试不加载优化器
|
| 220 |
-
if hps.pretrainD != "":
|
| 221 |
-
if rank == 0:
|
| 222 |
-
logger.info("loaded pretrained %s" % (hps.pretrainD))
|
| 223 |
-
print(
|
| 224 |
-
net_d.module.load_state_dict(
|
| 225 |
-
torch.load(hps.pretrainD, map_location="cpu")["model"]
|
| 226 |
-
)
|
| 227 |
-
)
|
| 228 |
-
|
| 229 |
-
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
| 230 |
-
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
| 231 |
-
)
|
| 232 |
-
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
| 233 |
-
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
| 234 |
-
)
|
| 235 |
-
|
| 236 |
-
scaler = GradScaler(enabled=hps.train.fp16_run)
|
| 237 |
-
#
|
| 238 |
-
#if hps.total_epoch < 100:
|
| 239 |
-
#Min_for_Single_epoch = int(hps.total_epoch/2)
|
| 240 |
-
#else:
|
| 241 |
-
#Min_for_Single_epoch = 50
|
| 242 |
-
Min_for_Single_epoch = 1
|
| 243 |
-
#
|
| 244 |
-
if os.path.exists(f"Loss_Gen_Per_Epoch_{hps.name}.p") and os.path.exists(f"Loss_Disc_Per_Epoch_{hps.name}.p"):
|
| 245 |
-
with open(f'Loss_Gen_Per_Epoch_{hps.name}.p', 'rb') as Loss_Gen:
|
| 246 |
-
Loss_Gen_Per_Epoch = p.load(Loss_Gen)
|
| 247 |
-
for i in range(len(Loss_Gen_Per_Epoch)-epoch_str+1):
|
| 248 |
-
Loss_Gen_Per_Epoch.pop()
|
| 249 |
-
with open(f'Loss_Disc_Per_Epoch_{hps.name}.p', 'rb') as Loss_Disc:
|
| 250 |
-
Loss_Disc_Per_Epoch = p.load(Loss_Disc)
|
| 251 |
-
for i in range(len(Loss_Disc_Per_Epoch)-epoch_str+1):
|
| 252 |
-
Loss_Disc_Per_Epoch.pop()
|
| 253 |
-
if os.path.exists(f"prev_best_epoch_{hps.name}.p"):
|
| 254 |
-
with open(f'prev_best_epoch_{hps.name}.p', 'rb') as prev_best_epoch_f:
|
| 255 |
-
prev_best_epoch = p.load(prev_best_epoch_f)
|
| 256 |
-
#
|
| 257 |
-
cache = []
|
| 258 |
-
for epoch in range(epoch_str, hps.train.epochs+1):
|
| 259 |
-
start_time = ttime()
|
| 260 |
-
if rank == 0:
|
| 261 |
-
train_and_evaluate(
|
| 262 |
-
rank,
|
| 263 |
-
epoch,
|
| 264 |
-
hps,
|
| 265 |
-
[net_g, net_d],
|
| 266 |
-
[optim_g, optim_d],
|
| 267 |
-
[scheduler_g, scheduler_d],
|
| 268 |
-
scaler,
|
| 269 |
-
[train_loader, None],
|
| 270 |
-
logger,
|
| 271 |
-
[writer, writer_eval],
|
| 272 |
-
cache,
|
| 273 |
-
)
|
| 274 |
-
|
| 275 |
-
# Printing and Saving stuff
|
| 276 |
-
loss_gen_all = loss_gen_all.item()
|
| 277 |
-
loss_disc = loss_disc.item()
|
| 278 |
-
#
|
| 279 |
-
Loss_Gen_Per_Epoch.append(loss_gen_all)
|
| 280 |
-
Loss_Disc_Per_Epoch.append(loss_disc)
|
| 281 |
-
#print(hps.train.epochs, epoch_str)
|
| 282 |
-
#
|
| 283 |
-
with open(f'Loss_Gen_Per_Epoch_{hps.name}.p', 'wb') as Loss_Gen:
|
| 284 |
-
p.dump(Loss_Gen_Per_Epoch, Loss_Gen)
|
| 285 |
-
Loss_Gen.close()
|
| 286 |
-
with open(f'Loss_Disc_Per_Epoch_{hps.name}.p', 'wb') as Loss_Disc:
|
| 287 |
-
p.dump(Loss_Disc_Per_Epoch, Loss_Disc)
|
| 288 |
-
Loss_Disc.close()
|
| 289 |
-
#
|
| 290 |
-
Lowest_lg = f"{min(Loss_Gen_Per_Epoch):.5f}, epoch: {right_index(Loss_Gen_Per_Epoch,min(Loss_Gen_Per_Epoch))+1}"
|
| 291 |
-
Lowest_ld = f"{min(Loss_Disc_Per_Epoch):.5f}, epoch: {right_index(Loss_Disc_Per_Epoch,min(Loss_Disc_Per_Epoch))+1}"
|
| 292 |
-
print(f"{hps.name}_e{epoch}_s{global_step} | Loss gen total: {Loss_Gen_Per_Epoch[-1]:.5f} | Lowest loss G: {Lowest_lg}\n Loss disc: {Loss_Disc_Per_Epoch[-1]:.5f} | Lowest loss D: {Lowest_ld}")
|
| 293 |
-
print(f"Specific Value: loss gen={loss_gen:.3f}, loss fm={loss_fm:.3f},loss mel={loss_mel:.3f}, loss kl={loss_kl:.3f}")
|
| 294 |
-
#
|
| 295 |
-
if len(Loss_Gen_Per_Epoch) > Min_for_Single_epoch and epoch % hps.save_every_epoch != 0:
|
| 296 |
-
if min(Loss_Gen_Per_Epoch[Min_for_Single_epoch::1]) == Loss_Gen_Per_Epoch[-1]:
|
| 297 |
-
if hasattr(net_g, "module"):
|
| 298 |
-
ckpt = net_g.module.state_dict()
|
| 299 |
-
else:
|
| 300 |
-
ckpt = net_g.state_dict()
|
| 301 |
-
savee(ckpt, hps.sample_rate, hps.if_f0, hps.name + "_e%s_s%s" % (epoch, global_step), epoch, hps.version, hps, experiment_name)
|
| 302 |
-
os.rename(f"logs/{hps.name}/weights/{hps.name}_e{epoch}_s{global_step}.pth",f"logs/{hps.name}/weights/{hps.name}_e{epoch}_s{global_step}_Best_Epoch.pth")
|
| 303 |
-
print(f"Saved: {hps.name}_e{epoch}_s{global_step}_Best_Epoch.pth")
|
| 304 |
-
try:
|
| 305 |
-
os.remove(prev_best_epoch)
|
| 306 |
-
except:
|
| 307 |
-
print("Nothing to remove, if there's is you may need to check again")
|
| 308 |
-
pass
|
| 309 |
-
else:
|
| 310 |
-
print(f"{os.path.split(prev_best_epoch)[-1]} Removed")
|
| 311 |
-
best_epoch = epoch
|
| 312 |
-
best_global_step = global_step
|
| 313 |
-
prev_best_epoch = f"logs/{hps.name}/weights/{hps.name}_e{best_epoch}_s{best_global_step}_Best_Epoch.pth"
|
| 314 |
-
with open(f'prev_best_epoch_{hps.name}.p', 'wb') as prev_best_epoch_f:
|
| 315 |
-
p.dump(prev_best_epoch, prev_best_epoch_f)
|
| 316 |
-
#
|
| 317 |
-
elapsed_time = ttime() - start_time
|
| 318 |
-
elapsed_time_record.append(elapsed_time)
|
| 319 |
-
if epoch-1 == epoch_str:
|
| 320 |
-
elapsed_time_record.pop(0)
|
| 321 |
-
elapsed_time_avg = sum(elapsed_time_record)/len(elapsed_time_record)
|
| 322 |
-
time_left = elapsed_time_avg*(hps.total_epoch-epoch)
|
| 323 |
-
hour, minute, second, millisec = Calculate_format_elapsed_time(elapsed_time)
|
| 324 |
-
hour_left, minute_left, second_left, millisec_left = Calculate_format_elapsed_time(time_left)
|
| 325 |
-
print(f"Time Elapsed: {hour}h:{formating_time(minute)}m:{formating_time(second)}s:{millisec}ms || Time left: {hour_left}h:{formating_time(minute_left)}m:{formating_time(second_left)}s:{millisec_left}ms\n")
|
| 326 |
-
#
|
| 327 |
-
if ((len(Loss_Gen_Per_Epoch) - right_index(Loss_Gen_Per_Epoch,min(Loss_Gen_Per_Epoch)) + 1) > overtrain and overtrain != -1):
|
| 328 |
-
logger.info("Over Train threshold reached. Training is done.")
|
| 329 |
-
print("Over Train threshold reached. Training is done.")
|
| 330 |
-
|
| 331 |
-
if hasattr(net_g, "module"):
|
| 332 |
-
ckpt = net_g.module.state_dict()
|
| 333 |
-
else:
|
| 334 |
-
ckpt = net_g.state_dict()
|
| 335 |
-
logger.info(
|
| 336 |
-
"saving final ckpt:%s"
|
| 337 |
-
% (
|
| 338 |
-
savee(
|
| 339 |
-
ckpt, hps.sample_rate, hps.if_f0, hps.name, epoch, hps.version, hps, experiment_name
|
| 340 |
-
)
|
| 341 |
-
)
|
| 342 |
-
)
|
| 343 |
-
sleep(1)
|
| 344 |
-
with open("csvdb/stop.csv", "w+", newline="") as STOPCSVwrite:
|
| 345 |
-
csv_writer = csv.writer(STOPCSVwrite, delimiter=",")
|
| 346 |
-
csv_writer.writerow(["False"])
|
| 347 |
-
os._exit(2333333)
|
| 348 |
-
|
| 349 |
-
else:
|
| 350 |
-
train_and_evaluate(
|
| 351 |
-
rank,
|
| 352 |
-
epoch,
|
| 353 |
-
hps,
|
| 354 |
-
[net_g, net_d],
|
| 355 |
-
[optim_g, optim_d],
|
| 356 |
-
[scheduler_g, scheduler_d],
|
| 357 |
-
scaler,
|
| 358 |
-
[train_loader, None],
|
| 359 |
-
None,
|
| 360 |
-
None,
|
| 361 |
-
cache,
|
| 362 |
-
)
|
| 363 |
-
scheduler_g.step()
|
| 364 |
-
scheduler_d.step()
|
| 365 |
-
#gathered_tensors_gen = [torch.zeros_like(loss_gen_all) for _ in range(n_gpus)]
|
| 366 |
-
#gathered_tensors_disc = [torch.zeros_like(loss_disc) for _ in range(n_gpus)]
|
| 367 |
-
#dist.all_gather(gathered_tensors_gen, loss_gen_all)
|
| 368 |
-
#dist.all_gather(gathered_tensors_disc, loss_disc)
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
#######
|
| 373 |
-
|
| 374 |
-
def train_and_evaluate(
|
| 375 |
-
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers, cache
|
| 376 |
-
):
|
| 377 |
-
global loss_gen_all, loss_disc, ckpt, loss_kl, loss_fm, loss_gen, loss_mel
|
| 378 |
-
net_g, net_d = nets
|
| 379 |
-
optim_g, optim_d = optims
|
| 380 |
-
train_loader, eval_loader = loaders
|
| 381 |
-
if writers is not None:
|
| 382 |
-
writer, writer_eval = writers
|
| 383 |
-
|
| 384 |
-
train_loader.batch_sampler.set_epoch(epoch)
|
| 385 |
-
global global_step
|
| 386 |
-
|
| 387 |
-
net_g.train()
|
| 388 |
-
net_d.train()
|
| 389 |
-
|
| 390 |
-
# Prepare data iterator
|
| 391 |
-
if hps.if_cache_data_in_gpu == True:
|
| 392 |
-
# Use Cache
|
| 393 |
-
data_iterator = cache
|
| 394 |
-
if cache == []:
|
| 395 |
-
# Make new cache
|
| 396 |
-
for batch_idx, info in enumerate(train_loader):
|
| 397 |
-
# Unpack
|
| 398 |
-
if hps.if_f0 == 1:
|
| 399 |
-
(
|
| 400 |
-
phone,
|
| 401 |
-
phone_lengths,
|
| 402 |
-
pitch,
|
| 403 |
-
pitchf,
|
| 404 |
-
spec,
|
| 405 |
-
spec_lengths,
|
| 406 |
-
wave,
|
| 407 |
-
wave_lengths,
|
| 408 |
-
sid,
|
| 409 |
-
) = info
|
| 410 |
-
else:
|
| 411 |
-
(
|
| 412 |
-
phone,
|
| 413 |
-
phone_lengths,
|
| 414 |
-
spec,
|
| 415 |
-
spec_lengths,
|
| 416 |
-
wave,
|
| 417 |
-
wave_lengths,
|
| 418 |
-
sid,
|
| 419 |
-
) = info
|
| 420 |
-
# Load on CUDA
|
| 421 |
-
if torch.cuda.is_available():
|
| 422 |
-
phone = phone.cuda(rank, non_blocking=True)
|
| 423 |
-
phone_lengths = phone_lengths.cuda(rank, non_blocking=True)
|
| 424 |
-
if hps.if_f0 == 1:
|
| 425 |
-
pitch = pitch.cuda(rank, non_blocking=True)
|
| 426 |
-
pitchf = pitchf.cuda(rank, non_blocking=True)
|
| 427 |
-
sid = sid.cuda(rank, non_blocking=True)
|
| 428 |
-
spec = spec.cuda(rank, non_blocking=True)
|
| 429 |
-
spec_lengths = spec_lengths.cuda(rank, non_blocking=True)
|
| 430 |
-
wave = wave.cuda(rank, non_blocking=True)
|
| 431 |
-
wave_lengths = wave_lengths.cuda(rank, non_blocking=True)
|
| 432 |
-
# Cache on list
|
| 433 |
-
if hps.if_f0 == 1:
|
| 434 |
-
cache.append(
|
| 435 |
-
(
|
| 436 |
-
batch_idx,
|
| 437 |
-
(
|
| 438 |
-
phone,
|
| 439 |
-
phone_lengths,
|
| 440 |
-
pitch,
|
| 441 |
-
pitchf,
|
| 442 |
-
spec,
|
| 443 |
-
spec_lengths,
|
| 444 |
-
wave,
|
| 445 |
-
wave_lengths,
|
| 446 |
-
sid,
|
| 447 |
-
),
|
| 448 |
-
)
|
| 449 |
-
)
|
| 450 |
-
else:
|
| 451 |
-
cache.append(
|
| 452 |
-
(
|
| 453 |
-
batch_idx,
|
| 454 |
-
(
|
| 455 |
-
phone,
|
| 456 |
-
phone_lengths,
|
| 457 |
-
spec,
|
| 458 |
-
spec_lengths,
|
| 459 |
-
wave,
|
| 460 |
-
wave_lengths,
|
| 461 |
-
sid,
|
| 462 |
-
),
|
| 463 |
-
)
|
| 464 |
-
)
|
| 465 |
-
else:
|
| 466 |
-
# Load shuffled cache
|
| 467 |
-
shuffle(cache)
|
| 468 |
-
else:
|
| 469 |
-
# Loader
|
| 470 |
-
data_iterator = enumerate(train_loader)
|
| 471 |
-
|
| 472 |
-
# Run steps
|
| 473 |
-
epoch_recorder = EpochRecorder()
|
| 474 |
-
|
| 475 |
-
for batch_idx, info in data_iterator:
|
| 476 |
-
# Data
|
| 477 |
-
## Unpack
|
| 478 |
-
if hps.if_f0 == 1:
|
| 479 |
-
(
|
| 480 |
-
phone,
|
| 481 |
-
phone_lengths,
|
| 482 |
-
pitch,
|
| 483 |
-
pitchf,
|
| 484 |
-
spec,
|
| 485 |
-
spec_lengths,
|
| 486 |
-
wave,
|
| 487 |
-
wave_lengths,
|
| 488 |
-
sid,
|
| 489 |
-
) = info
|
| 490 |
-
else:
|
| 491 |
-
phone, phone_lengths, spec, spec_lengths, wave, wave_lengths, sid = info
|
| 492 |
-
## Load on CUDA
|
| 493 |
-
if (hps.if_cache_data_in_gpu == False) and torch.cuda.is_available():
|
| 494 |
-
phone = phone.cuda(rank, non_blocking=True)
|
| 495 |
-
phone_lengths = phone_lengths.cuda(rank, non_blocking=True)
|
| 496 |
-
if hps.if_f0 == 1:
|
| 497 |
-
pitch = pitch.cuda(rank, non_blocking=True)
|
| 498 |
-
pitchf = pitchf.cuda(rank, non_blocking=True)
|
| 499 |
-
sid = sid.cuda(rank, non_blocking=True)
|
| 500 |
-
spec = spec.cuda(rank, non_blocking=True)
|
| 501 |
-
spec_lengths = spec_lengths.cuda(rank, non_blocking=True)
|
| 502 |
-
wave = wave.cuda(rank, non_blocking=True)
|
| 503 |
-
# wave_lengths = wave_lengths.cuda(rank, non_blocking=True)
|
| 504 |
-
|
| 505 |
-
# Calculate
|
| 506 |
-
with autocast(enabled=hps.train.fp16_run):
|
| 507 |
-
if hps.if_f0 == 1:
|
| 508 |
-
(
|
| 509 |
-
y_hat,
|
| 510 |
-
ids_slice,
|
| 511 |
-
x_mask,
|
| 512 |
-
z_mask,
|
| 513 |
-
(z, z_p, m_p, logs_p, m_q, logs_q),
|
| 514 |
-
) = net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid)
|
| 515 |
-
else:
|
| 516 |
-
(
|
| 517 |
-
y_hat,
|
| 518 |
-
ids_slice,
|
| 519 |
-
x_mask,
|
| 520 |
-
z_mask,
|
| 521 |
-
(z, z_p, m_p, logs_p, m_q, logs_q),
|
| 522 |
-
) = net_g(phone, phone_lengths, spec, spec_lengths, sid)
|
| 523 |
-
mel = spec_to_mel_torch(
|
| 524 |
-
spec,
|
| 525 |
-
hps.data.filter_length,
|
| 526 |
-
hps.data.n_mel_channels,
|
| 527 |
-
hps.data.sampling_rate,
|
| 528 |
-
hps.data.mel_fmin,
|
| 529 |
-
hps.data.mel_fmax,
|
| 530 |
-
)
|
| 531 |
-
y_mel = commons.slice_segments(
|
| 532 |
-
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
| 533 |
-
)
|
| 534 |
-
with autocast(enabled=False):
|
| 535 |
-
y_hat_mel = mel_spectrogram_torch(
|
| 536 |
-
y_hat.float().squeeze(1),
|
| 537 |
-
hps.data.filter_length,
|
| 538 |
-
hps.data.n_mel_channels,
|
| 539 |
-
hps.data.sampling_rate,
|
| 540 |
-
hps.data.hop_length,
|
| 541 |
-
hps.data.win_length,
|
| 542 |
-
hps.data.mel_fmin,
|
| 543 |
-
hps.data.mel_fmax,
|
| 544 |
-
)
|
| 545 |
-
if hps.train.fp16_run == True:
|
| 546 |
-
y_hat_mel = y_hat_mel.half()
|
| 547 |
-
wave = commons.slice_segments(
|
| 548 |
-
wave, ids_slice * hps.data.hop_length, hps.train.segment_size
|
| 549 |
-
) # slice
|
| 550 |
-
|
| 551 |
-
# Discriminator
|
| 552 |
-
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
|
| 553 |
-
with autocast(enabled=False):
|
| 554 |
-
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
| 555 |
-
y_d_hat_r, y_d_hat_g
|
| 556 |
-
)
|
| 557 |
-
optim_d.zero_grad()
|
| 558 |
-
scaler.scale(loss_disc).backward()
|
| 559 |
-
scaler.unscale_(optim_d)
|
| 560 |
-
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
| 561 |
-
scaler.step(optim_d)
|
| 562 |
-
|
| 563 |
-
with autocast(enabled=hps.train.fp16_run):
|
| 564 |
-
# Generator
|
| 565 |
-
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
|
| 566 |
-
with autocast(enabled=False):
|
| 567 |
-
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
| 568 |
-
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
| 569 |
-
loss_fm = feature_loss(fmap_r, fmap_g)
|
| 570 |
-
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
| 571 |
-
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
|
| 572 |
-
optim_g.zero_grad()
|
| 573 |
-
scaler.scale(loss_gen_all).backward()
|
| 574 |
-
scaler.unscale_(optim_g)
|
| 575 |
-
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
| 576 |
-
scaler.step(optim_g)
|
| 577 |
-
scaler.update()
|
| 578 |
-
|
| 579 |
-
if rank == 0:
|
| 580 |
-
if global_step % hps.train.log_interval == 0:
|
| 581 |
-
lr = optim_g.param_groups[0]["lr"]
|
| 582 |
-
logger.info( ""
|
| 583 |
-
#"Train Epoch: {} [{:.0f}%]".format(
|
| 584 |
-
#epoch, 100.0 * batch_idx / len(train_loader)
|
| 585 |
-
#)
|
| 586 |
-
)
|
| 587 |
-
# Amor For Tensorboard display
|
| 588 |
-
if loss_mel > 75:
|
| 589 |
-
loss_mel = 75
|
| 590 |
-
if loss_kl > 9:
|
| 591 |
-
loss_kl = 9
|
| 592 |
-
|
| 593 |
-
logger.info([global_step, lr])
|
| 594 |
-
logger.info(""
|
| 595 |
-
#f"loss_disc={loss_disc:.3f}, loss_gen={loss_gen:.3f}, loss_fm={loss_fm:.3f},loss_mel={loss_mel:.3f}, loss_kl={loss_kl:.3f}"
|
| 596 |
-
)
|
| 597 |
-
scalar_dict = {
|
| 598 |
-
"loss/g/total": loss_gen_all,
|
| 599 |
-
"loss/d/total": loss_disc,
|
| 600 |
-
"learning_rate": lr,
|
| 601 |
-
"grad_norm_d": grad_norm_d,
|
| 602 |
-
"grad_norm_g": grad_norm_g,
|
| 603 |
-
}
|
| 604 |
-
scalar_dict.update(
|
| 605 |
-
{
|
| 606 |
-
"loss/g/fm": loss_fm,
|
| 607 |
-
"loss/g/mel": loss_mel,
|
| 608 |
-
"loss/g/kl": loss_kl,
|
| 609 |
-
}
|
| 610 |
-
)
|
| 611 |
-
|
| 612 |
-
scalar_dict.update(
|
| 613 |
-
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
| 614 |
-
)
|
| 615 |
-
scalar_dict.update(
|
| 616 |
-
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
| 617 |
-
)
|
| 618 |
-
scalar_dict.update(
|
| 619 |
-
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
| 620 |
-
)
|
| 621 |
-
image_dict = {
|
| 622 |
-
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
| 623 |
-
y_mel[0].data.cpu().numpy()
|
| 624 |
-
),
|
| 625 |
-
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
| 626 |
-
y_hat_mel[0].data.cpu().numpy()
|
| 627 |
-
),
|
| 628 |
-
"all/mel": utils.plot_spectrogram_to_numpy(
|
| 629 |
-
mel[0].data.cpu().numpy()
|
| 630 |
-
),
|
| 631 |
-
}
|
| 632 |
-
utils.summarize(
|
| 633 |
-
writer=writer,
|
| 634 |
-
global_step=global_step,
|
| 635 |
-
images=image_dict,
|
| 636 |
-
scalars=scalar_dict,
|
| 637 |
-
)
|
| 638 |
-
global_step += 1
|
| 639 |
-
# /Run steps
|
| 640 |
-
|
| 641 |
-
if epoch % hps.save_every_epoch == 0 and rank == 0:
|
| 642 |
-
print(f"Saved: {hps.name}_e{epoch}_s{global_step}.pth")
|
| 643 |
-
if hps.if_latest == 0:
|
| 644 |
-
utils.save_checkpoint(
|
| 645 |
-
net_g,
|
| 646 |
-
optim_g,
|
| 647 |
-
hps.train.learning_rate,
|
| 648 |
-
epoch,
|
| 649 |
-
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
| 650 |
-
)
|
| 651 |
-
utils.save_checkpoint(
|
| 652 |
-
net_d,
|
| 653 |
-
optim_d,
|
| 654 |
-
hps.train.learning_rate,
|
| 655 |
-
epoch,
|
| 656 |
-
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
| 657 |
-
)
|
| 658 |
-
else:
|
| 659 |
-
utils.save_checkpoint(
|
| 660 |
-
net_g,
|
| 661 |
-
optim_g,
|
| 662 |
-
hps.train.learning_rate,
|
| 663 |
-
epoch,
|
| 664 |
-
os.path.join(hps.model_dir, "G_{}.pth".format(2333333)),
|
| 665 |
-
)
|
| 666 |
-
utils.save_checkpoint(
|
| 667 |
-
net_d,
|
| 668 |
-
optim_d,
|
| 669 |
-
hps.train.learning_rate,
|
| 670 |
-
epoch,
|
| 671 |
-
os.path.join(hps.model_dir, "D_{}.pth".format(2333333)),
|
| 672 |
-
)
|
| 673 |
-
if rank == 0 and hps.save_every_weights == "1":
|
| 674 |
-
if hasattr(net_g, "module"):
|
| 675 |
-
ckpt = net_g.module.state_dict()
|
| 676 |
-
else:
|
| 677 |
-
ckpt = net_g.state_dict()
|
| 678 |
-
logger.info(
|
| 679 |
-
"saving ckpt %s_e%s:%s"
|
| 680 |
-
% (
|
| 681 |
-
hps.name,
|
| 682 |
-
epoch,
|
| 683 |
-
savee(
|
| 684 |
-
ckpt,
|
| 685 |
-
hps.sample_rate,
|
| 686 |
-
hps.if_f0,
|
| 687 |
-
hps.name + "_e%s_s%s" % (epoch, global_step),
|
| 688 |
-
epoch,
|
| 689 |
-
hps.version,
|
| 690 |
-
hps,
|
| 691 |
-
experiment_name,
|
| 692 |
-
),
|
| 693 |
-
)
|
| 694 |
-
)
|
| 695 |
-
|
| 696 |
-
try:
|
| 697 |
-
with open("csvdb/stop.csv") as CSVStop:
|
| 698 |
-
csv_reader = list(csv.reader(CSVStop))
|
| 699 |
-
stopbtn = (
|
| 700 |
-
csv_reader[0][0]
|
| 701 |
-
if csv_reader is not None
|
| 702 |
-
else (lambda: exec('raise ValueError("No data")'))()
|
| 703 |
-
)
|
| 704 |
-
stopbtn = (
|
| 705 |
-
lambda stopbtn: True
|
| 706 |
-
if stopbtn.lower() == "true"
|
| 707 |
-
else (False if stopbtn.lower() == "false" else stopbtn)
|
| 708 |
-
)(stopbtn)
|
| 709 |
-
except (ValueError, TypeError, IndexError):
|
| 710 |
-
stopbtn = False
|
| 711 |
-
|
| 712 |
-
if stopbtn:
|
| 713 |
-
logger.info("Stop Button was pressed. The program is closed.")
|
| 714 |
-
if hasattr(net_g, "module"):
|
| 715 |
-
ckpt = net_g.module.state_dict()
|
| 716 |
-
else:
|
| 717 |
-
ckpt = net_g.state_dict()
|
| 718 |
-
logger.info(
|
| 719 |
-
"saving final ckpt:%s"
|
| 720 |
-
% (
|
| 721 |
-
savee(
|
| 722 |
-
ckpt,
|
| 723 |
-
hps.sample_rate,
|
| 724 |
-
hps.if_f0,
|
| 725 |
-
hps.name,
|
| 726 |
-
epoch,
|
| 727 |
-
hps.version,
|
| 728 |
-
hps,
|
| 729 |
-
experiment_name,
|
| 730 |
-
)
|
| 731 |
-
)
|
| 732 |
-
)
|
| 733 |
-
sleep(1)
|
| 734 |
-
with open("csvdb/stop.csv", "w+", newline="") as STOPCSVwrite:
|
| 735 |
-
csv_writer = csv.writer(STOPCSVwrite, delimiter=",")
|
| 736 |
-
csv_writer.writerow(["False"])
|
| 737 |
-
os._exit(2333333)
|
| 738 |
-
|
| 739 |
-
if rank == 0:
|
| 740 |
-
logger.info('')#"====> Epoch: {} {}".format(epoch, epoch_recorder.record()))
|
| 741 |
-
if epoch > hps.total_epoch and rank == 0:
|
| 742 |
-
logger.info("Training is done. The program is closed.")
|
| 743 |
-
|
| 744 |
-
if hasattr(net_g, "module"):
|
| 745 |
-
ckpt = net_g.module.state_dict()
|
| 746 |
-
else:
|
| 747 |
-
ckpt = net_g.state_dict()
|
| 748 |
-
logger.info(
|
| 749 |
-
"saving final ckpt:%s"
|
| 750 |
-
% (
|
| 751 |
-
savee(
|
| 752 |
-
ckpt, hps.sample_rate, hps.if_f0, hps.name, epoch, hps.version, hps, experiment_name
|
| 753 |
-
)
|
| 754 |
-
)
|
| 755 |
-
)
|
| 756 |
-
sleep(1)
|
| 757 |
-
with open("csvdb/stop.csv", "w+", newline="") as STOPCSVwrite:
|
| 758 |
-
csv_writer = csv.writer(STOPCSVwrite, delimiter=",")
|
| 759 |
-
csv_writer.writerow(["False"])
|
| 760 |
-
os._exit(2333333)
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
if __name__ == "__main__":
|
| 764 |
-
torch.multiprocessing.set_start_method("spawn")
|
| 765 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|