Upload extract_f0_print.py
Browse files- extract_f0_print.py +302 -0
extract_f0_print.py
ADDED
|
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import traceback
|
| 3 |
+
import sys
|
| 4 |
+
import parselmouth
|
| 5 |
+
|
| 6 |
+
now_dir = os.getcwd()
|
| 7 |
+
sys.path.append(now_dir)
|
| 8 |
+
from LazyImport import lazyload
|
| 9 |
+
from my_utils import load_audio
|
| 10 |
+
import pyworld
|
| 11 |
+
import numpy as np, logging
|
| 12 |
+
torchcrepe = lazyload("torchcrepe") # Fork Feature. Crepe algo for training and preprocess
|
| 13 |
+
torch = lazyload("torch")
|
| 14 |
+
#from torch import Tensor # Fork Feature. Used for pitch prediction for torch crepe.
|
| 15 |
+
tqdm = lazyload("tqdm")
|
| 16 |
+
|
| 17 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
| 18 |
+
|
| 19 |
+
import multiprocessing
|
| 20 |
+
|
| 21 |
+
exp_dir = sys.argv[1]
|
| 22 |
+
f = open(f"{exp_dir}/extract_f0_feature.log", "a+")
|
| 23 |
+
|
| 24 |
+
DoFormant = False
|
| 25 |
+
Quefrency = 1.0
|
| 26 |
+
Timbre = 1.0
|
| 27 |
+
|
| 28 |
+
def printt(strr):
|
| 29 |
+
print(strr)
|
| 30 |
+
f.write(f"{strr}\n")
|
| 31 |
+
f.flush()
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
n_p = int(sys.argv[2])
|
| 35 |
+
f0method = sys.argv[3]
|
| 36 |
+
extraction_crepe_hop_length = 0
|
| 37 |
+
try:
|
| 38 |
+
extraction_crepe_hop_length = int(sys.argv[4])
|
| 39 |
+
except:
|
| 40 |
+
print("Temp Issue. echl is not being passed with argument!")
|
| 41 |
+
extraction_crepe_hop_length = 128
|
| 42 |
+
|
| 43 |
+
# print("EXTRACTION CREPE HOP LENGTH: " + str(extraction_crepe_hop_length))
|
| 44 |
+
# print("EXTRACTION CREPE HOP LENGTH TYPE: " + str(type(extraction_crepe_hop_length)))
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FeatureInput(object):
|
| 48 |
+
def __init__(self, samplerate=16000, hop_size=160):
|
| 49 |
+
self.fs = samplerate
|
| 50 |
+
self.hop = hop_size
|
| 51 |
+
|
| 52 |
+
self.f0_method_dict = self.get_f0_method_dict()
|
| 53 |
+
|
| 54 |
+
self.f0_bin = 256
|
| 55 |
+
self.f0_max = 1100.0
|
| 56 |
+
self.f0_min = 50.0
|
| 57 |
+
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
| 58 |
+
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
| 59 |
+
|
| 60 |
+
# EXPERIMENTAL. PROBABLY BUGGY
|
| 61 |
+
def mncrepe(self, method, x, p_len, crepe_hop_length):
|
| 62 |
+
f0 = None
|
| 63 |
+
torch_device_index = 0
|
| 64 |
+
torch_device = torch.device(
|
| 65 |
+
f"cuda:{torch_device_index % torch.cuda.device_count()}"
|
| 66 |
+
) if torch.cuda.is_available() \
|
| 67 |
+
else torch.device("mps") if torch.backends.mps.is_available() \
|
| 68 |
+
else torch.device("cpu")
|
| 69 |
+
|
| 70 |
+
audio = torch.from_numpy(x.astype(np.float32)).to(torch_device, copy=True)
|
| 71 |
+
audio /= torch.quantile(torch.abs(audio), 0.999)
|
| 72 |
+
audio = torch.unsqueeze(audio, dim=0)
|
| 73 |
+
if audio.ndim == 2 and audio.shape[0] > 1:
|
| 74 |
+
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
| 75 |
+
audio = audio.detach()
|
| 76 |
+
|
| 77 |
+
if method == 'mangio-crepe':
|
| 78 |
+
pitch: torch.Tensor = torchcrepe.predict(
|
| 79 |
+
audio,
|
| 80 |
+
self.fs,
|
| 81 |
+
crepe_hop_length,
|
| 82 |
+
self.f0_min,
|
| 83 |
+
self.f0_max,
|
| 84 |
+
"full",
|
| 85 |
+
batch_size=crepe_hop_length * 2,
|
| 86 |
+
device=torch_device,
|
| 87 |
+
pad=True,
|
| 88 |
+
)
|
| 89 |
+
p_len = p_len or x.shape[0] // crepe_hop_length
|
| 90 |
+
# Resize the pitch
|
| 91 |
+
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
| 92 |
+
source[source < 0.001] = np.nan
|
| 93 |
+
target = np.interp(
|
| 94 |
+
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
| 95 |
+
np.arange(0, len(source)),
|
| 96 |
+
source,
|
| 97 |
+
)
|
| 98 |
+
f0 = np.nan_to_num(target)
|
| 99 |
+
|
| 100 |
+
elif method == 'crepe':
|
| 101 |
+
batch_size = 512
|
| 102 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
| 103 |
+
f0, pd = torchcrepe.predict(
|
| 104 |
+
audio,
|
| 105 |
+
self.fs,
|
| 106 |
+
160,
|
| 107 |
+
self.f0_min,
|
| 108 |
+
self.f0_max,
|
| 109 |
+
"full",
|
| 110 |
+
batch_size=batch_size,
|
| 111 |
+
device=torch_device,
|
| 112 |
+
return_periodicity=True,
|
| 113 |
+
)
|
| 114 |
+
pd = torchcrepe.filter.median(pd, 3)
|
| 115 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
| 116 |
+
f0[pd < 0.1] = 0
|
| 117 |
+
f0 = f0[0].cpu().numpy()
|
| 118 |
+
f0 = f0[1:] # Get rid of extra first frame
|
| 119 |
+
|
| 120 |
+
return f0
|
| 121 |
+
|
| 122 |
+
def get_pm(self, x, p_len):
|
| 123 |
+
f0 = parselmouth.Sound(x, self.fs).to_pitch_ac(
|
| 124 |
+
time_step=160 / 16000,
|
| 125 |
+
voicing_threshold=0.6,
|
| 126 |
+
pitch_floor=self.f0_min,
|
| 127 |
+
pitch_ceiling=self.f0_max,
|
| 128 |
+
).selected_array["frequency"]
|
| 129 |
+
|
| 130 |
+
return np.pad(
|
| 131 |
+
f0,
|
| 132 |
+
[[max(0, (p_len - len(f0) + 1) // 2), max(0, p_len - len(f0) - (p_len - len(f0) + 1) // 2)]],
|
| 133 |
+
mode="constant"
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
def get_harvest(self, x):
|
| 137 |
+
f0_spectral = pyworld.harvest(
|
| 138 |
+
x.astype(np.double),
|
| 139 |
+
fs=self.fs,
|
| 140 |
+
f0_ceil=self.f0_max,
|
| 141 |
+
f0_floor=self.f0_min,
|
| 142 |
+
frame_period=1000 * self.hop / self.fs,
|
| 143 |
+
)
|
| 144 |
+
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs)
|
| 145 |
+
|
| 146 |
+
def get_dio(self, x):
|
| 147 |
+
f0_spectral = pyworld.dio(
|
| 148 |
+
x.astype(np.double),
|
| 149 |
+
fs=self.fs,
|
| 150 |
+
f0_ceil=self.f0_max,
|
| 151 |
+
f0_floor=self.f0_min,
|
| 152 |
+
frame_period=1000 * self.hop / self.fs,
|
| 153 |
+
)
|
| 154 |
+
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs)
|
| 155 |
+
|
| 156 |
+
def get_rmvpe(self, x):
|
| 157 |
+
if not hasattr(self, "model_rmvpe"):
|
| 158 |
+
from rmvpe import RMVPE
|
| 159 |
+
self.model_rmvpe = RMVPE("rmvpe.pt", is_half=False, device="cuda:0")
|
| 160 |
+
|
| 161 |
+
return self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
| 162 |
+
|
| 163 |
+
def get_rmvpe_onnx(self, x):
|
| 164 |
+
if not hasattr(self, "model_rmvpe_onnx"):
|
| 165 |
+
from rmvpe import RMVPE
|
| 166 |
+
self.model_rmvpe_onnx = RMVPE("rmvpe.onnx", is_half=False, device="cuda:0")
|
| 167 |
+
|
| 168 |
+
return self.model_rmvpe_onnx.infer_from_audio(x, thred=0.03)
|
| 169 |
+
|
| 170 |
+
def get_f0_method_dict(self):
|
| 171 |
+
return {
|
| 172 |
+
"pm": self.get_pm,
|
| 173 |
+
"harvest": self.get_harvest,
|
| 174 |
+
"dio": self.get_dio,
|
| 175 |
+
"rmvpe_onnx": self.get_rmvpe_onnx,
|
| 176 |
+
"rmvpe": self.get_rmvpe
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
def get_f0_hybrid_computation(
|
| 180 |
+
self,
|
| 181 |
+
methods_str,
|
| 182 |
+
x,
|
| 183 |
+
p_len,
|
| 184 |
+
crepe_hop_length,
|
| 185 |
+
):
|
| 186 |
+
# Get various f0 methods from input to use in the computation stack
|
| 187 |
+
s = methods_str
|
| 188 |
+
s = s.split("hybrid")[1]
|
| 189 |
+
s = s.replace("[", "").replace("]", "")
|
| 190 |
+
methods = s.split("+")
|
| 191 |
+
f0_computation_stack = []
|
| 192 |
+
|
| 193 |
+
for method in methods:
|
| 194 |
+
if method in self.f0_method_dict:
|
| 195 |
+
f0 = self.f0_method_dict[method](x, p_len) if method == 'pm' else self.f0_method_dict[method](x)
|
| 196 |
+
f0_computation_stack.append(f0)
|
| 197 |
+
elif method == 'crepe' or method == 'mangio-crepe':
|
| 198 |
+
self.the_other_complex_function(x, method, crepe_hop_length)
|
| 199 |
+
|
| 200 |
+
if len(f0_computation_stack) != 0:
|
| 201 |
+
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0) if len(f0_computation_stack)>1 else f0_computation_stack[0]
|
| 202 |
+
return f0_median_hybrid
|
| 203 |
+
else:
|
| 204 |
+
raise ValueError("No valid methods were provided")
|
| 205 |
+
|
| 206 |
+
def compute_f0(self, path, f0_method, crepe_hop_length):
|
| 207 |
+
x = load_audio(path, self.fs, DoFormant, Quefrency, Timbre)
|
| 208 |
+
p_len = x.shape[0] // self.hop
|
| 209 |
+
|
| 210 |
+
if f0_method in self.f0_method_dict:
|
| 211 |
+
f0 = self.f0_method_dict[f0_method](x, p_len) if f0_method == 'pm' else self.f0_method_dict[f0_method](x)
|
| 212 |
+
elif f0_method in ['crepe', 'mangio-crepe']:
|
| 213 |
+
f0 = self.mncrepe(f0_method, x, p_len, crepe_hop_length)
|
| 214 |
+
elif "hybrid" in f0_method: # EXPERIMENTAL
|
| 215 |
+
# Perform hybrid median pitch estimation
|
| 216 |
+
f0 = self.get_f0_hybrid_computation(
|
| 217 |
+
f0_method,
|
| 218 |
+
x,
|
| 219 |
+
p_len,
|
| 220 |
+
crepe_hop_length,
|
| 221 |
+
)
|
| 222 |
+
# Mangio-RVC-Fork Feature: Add hybrid f0 inference to feature extraction. EXPERIMENTAL...
|
| 223 |
+
|
| 224 |
+
return f0
|
| 225 |
+
|
| 226 |
+
def coarse_f0(self, f0):
|
| 227 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
| 228 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
|
| 229 |
+
self.f0_bin - 2
|
| 230 |
+
) / (self.f0_mel_max - self.f0_mel_min) + 1
|
| 231 |
+
|
| 232 |
+
# use 0 or 1
|
| 233 |
+
f0_mel[f0_mel <= 1] = 1
|
| 234 |
+
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
|
| 235 |
+
f0_coarse = np.rint(f0_mel).astype(int)
|
| 236 |
+
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
|
| 237 |
+
f0_coarse.max(),
|
| 238 |
+
f0_coarse.min(),
|
| 239 |
+
)
|
| 240 |
+
return f0_coarse
|
| 241 |
+
|
| 242 |
+
def go(self, paths, f0_method, crepe_hop_length, thread_n):
|
| 243 |
+
if not paths:
|
| 244 |
+
printt("no-f0-todo")
|
| 245 |
+
return
|
| 246 |
+
|
| 247 |
+
with tqdm.tqdm(total=len(paths), leave=True, position=thread_n) as pbar:
|
| 248 |
+
description = f"thread:{thread_n}, f0ing, Hop-Length:{crepe_hop_length}"
|
| 249 |
+
pbar.set_description(description)
|
| 250 |
+
|
| 251 |
+
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
|
| 252 |
+
try:
|
| 253 |
+
if (
|
| 254 |
+
os.path.exists(opt_path1 + ".npy")
|
| 255 |
+
and os.path.exists(opt_path2 + ".npy")
|
| 256 |
+
):
|
| 257 |
+
pbar.update(1)
|
| 258 |
+
continue
|
| 259 |
+
|
| 260 |
+
featur_pit = self.compute_f0(inp_path, f0_method, crepe_hop_length)
|
| 261 |
+
np.save(opt_path2, featur_pit, allow_pickle=False) # nsf
|
| 262 |
+
|
| 263 |
+
coarse_pit = self.coarse_f0(featur_pit)
|
| 264 |
+
np.save(opt_path1, coarse_pit, allow_pickle=False) # ori
|
| 265 |
+
|
| 266 |
+
pbar.update(1)
|
| 267 |
+
except Exception as e:
|
| 268 |
+
printt(f"f0fail-{idx}-{inp_path}-{traceback.format_exc()}")
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
if __name__ == "__main__":
|
| 272 |
+
# exp_dir=r"E:\codes\py39\dataset\mi-test"
|
| 273 |
+
# n_p=16
|
| 274 |
+
# f = open("%s/log_extract_f0.log"%exp_dir, "w")
|
| 275 |
+
printt(sys.argv)
|
| 276 |
+
featureInput = FeatureInput()
|
| 277 |
+
paths = []
|
| 278 |
+
inp_root = "%s/1_16k_wavs" % (exp_dir)
|
| 279 |
+
opt_root1 = "%s/2a_f0" % (exp_dir)
|
| 280 |
+
opt_root2 = "%s/2b-f0nsf" % (exp_dir)
|
| 281 |
+
|
| 282 |
+
os.makedirs(opt_root1, exist_ok=True)
|
| 283 |
+
os.makedirs(opt_root2, exist_ok=True)
|
| 284 |
+
for name in sorted(list(os.listdir(inp_root))):
|
| 285 |
+
inp_path = "%s/%s" % (inp_root, name)
|
| 286 |
+
if "spec" in inp_path:
|
| 287 |
+
continue
|
| 288 |
+
opt_path1 = "%s/%s" % (opt_root1, name)
|
| 289 |
+
opt_path2 = "%s/%s" % (opt_root2, name)
|
| 290 |
+
paths.append([inp_path, opt_path1, opt_path2])
|
| 291 |
+
|
| 292 |
+
ps = []
|
| 293 |
+
print("Using f0 method: " + f0method)
|
| 294 |
+
for i in range(n_p):
|
| 295 |
+
p = multiprocessing.Process(
|
| 296 |
+
target=featureInput.go,
|
| 297 |
+
args=(paths[i::n_p], f0method, extraction_crepe_hop_length, i),
|
| 298 |
+
)
|
| 299 |
+
ps.append(p)
|
| 300 |
+
p.start()
|
| 301 |
+
for i in range(n_p):
|
| 302 |
+
ps[i].join()
|