File size: 4,151 Bytes
0a76aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
license: apache-2.0
base_model: google/functiongemma-270m-it
library_name: mlx
language:
  - en
tags:
  - quantllm
  - mlx
  - mlx-lm
  - apple-silicon
  - transformers
  - q4_k_m
---

<div align="center">

# 🍎 functiongemma-270m-it-4bit-mlx

**google/functiongemma-270m-it** converted to **MLX** format

[![QuantLLM](https://img.shields.io/badge/πŸš€_Made_with-QuantLLM-orange?style=for-the-badge)](https://github.com/codewithdark-git/QuantLLM)
[![Format](https://img.shields.io/badge/Format-MLX-blue?style=for-the-badge)]()
[![Quantization](https://img.shields.io/badge/Quant-Q4_K_M-green?style=for-the-badge)]()

<a href="https://github.com/codewithdark-git/QuantLLM">⭐ Star QuantLLM on GitHub</a>

</div>

---


## πŸ“– About This Model

This model is **[google/functiongemma-270m-it](https://huggingface.co/google/functiongemma-270m-it)** converted to **MLX** format optimized for Apple Silicon (M1/M2/M3/M4) Macs with native acceleration.

| Property | Value |
|----------|-------|
| **Base Model** | [google/functiongemma-270m-it](https://huggingface.co/google/functiongemma-270m-it) |
| **Format** | MLX |
| **Quantization** | Q4_K_M |
| **License** | apache-2.0 |
| **Created With** | [QuantLLM](https://github.com/codewithdark-git/QuantLLM) |


## πŸš€ Quick Start

### Generate Text with mlx-lm

```python
from mlx_lm import load, generate

# Load the model
model, tokenizer = load("QuantLLM/functiongemma-270m-it-4bit-mlx")

# Simple generation
prompt = "Explain quantum computing in simple terms"
messages = [{"role": "user", "content": prompt}]
prompt_formatted = tokenizer.apply_chat_template(
    messages, 
    add_generation_prompt=True
)

# Generate response
text = generate(model, tokenizer, prompt=prompt_formatted, verbose=True)
print(text)
```

### Streaming Generation

```python
from mlx_lm import load, stream_generate

model, tokenizer = load("QuantLLM/functiongemma-270m-it-4bit-mlx")

prompt = "Write a haiku about coding"
messages = [{"role": "user", "content": prompt}]
prompt_formatted = tokenizer.apply_chat_template(
    messages, 
    add_generation_prompt=True
)

# Stream tokens as they're generated
for token in stream_generate(model, tokenizer, prompt=prompt_formatted, max_tokens=200):
    print(token, end="", flush=True)
```

### Command Line Interface

```bash
# Install mlx-lm
pip install mlx-lm

# Generate text
python -m mlx_lm.generate --model QuantLLM/functiongemma-270m-it-4bit-mlx --prompt "Hello!"

# Interactive chat
python -m mlx_lm.chat --model QuantLLM/functiongemma-270m-it-4bit-mlx
```

### System Requirements

| Requirement | Minimum |
|-------------|---------|
| **Chip** | Apple Silicon (M1/M2/M3/M4) |
| **macOS** | 13.0 (Ventura) or later |
| **Python** | 3.10+ |
| **RAM** | 8GB+ (16GB recommended) |

```bash
# Install dependencies
pip install mlx-lm
```


## πŸ“Š Model Details

| Property | Value |
|----------|-------|
| **Original Model** | [google/functiongemma-270m-it](https://huggingface.co/google/functiongemma-270m-it) |
| **Format** | MLX |
| **Quantization** | Q4_K_M |
| **License** | `apache-2.0` |
| **Export Date** | 2025-12-21 |
| **Exported By** | [QuantLLM v2.0](https://github.com/codewithdark-git/QuantLLM) |



---

## πŸš€ Created with QuantLLM

<div align="center">

[![QuantLLM](https://img.shields.io/badge/πŸš€_QuantLLM-Ultra--fast_LLM_Quantization-orange?style=for-the-badge)](https://github.com/codewithdark-git/QuantLLM)

**Convert any model to GGUF, ONNX, or MLX in one line!**

```python
from quantllm import turbo

# Load any HuggingFace model
model = turbo("google/functiongemma-270m-it")

# Export to any format
model.export("mlx", quantization="Q4_K_M")

# Push to HuggingFace
model.push("your-repo", format="mlx")
```

<a href="https://github.com/codewithdark-git/QuantLLM">
  <img src="https://img.shields.io/github/stars/codewithdark-git/QuantLLM?style=social" alt="GitHub Stars">
</a>

**[πŸ“š Documentation](https://github.com/codewithdark-git/QuantLLM#readme)** Β· 
**[πŸ› Report Issue](https://github.com/codewithdark-git/QuantLLM/issues)** Β· 
**[πŸ’‘ Request Feature](https://github.com/codewithdark-git/QuantLLM/issues)**

</div>