Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,335 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
|
| 4 |
---
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
###
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: cc-by-nc-4.0
|
| 3 |
+
base_model: mlabonne/NeuralMonarch-7B
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
- axolotl
|
| 7 |
+
- mistral
|
| 8 |
+
- instruct
|
| 9 |
+
- finetune
|
| 10 |
+
- chatml
|
| 11 |
+
- gpt4
|
| 12 |
+
- synthetic data
|
| 13 |
+
- distillation
|
| 14 |
+
model-index:
|
| 15 |
+
- name: AlphaMonarch-laser
|
| 16 |
+
results: []
|
| 17 |
+
datasets:
|
| 18 |
+
- argilla/OpenHermes2.5-dpo-binarized-alpha
|
| 19 |
+
language:
|
| 20 |
+
- en
|
| 21 |
library_name: transformers
|
| 22 |
+
pipeline_tag: text-generation
|
| 23 |
---
|
| 24 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 25 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 26 |
+
|
| 27 |
+
# AlphaMonarch-laser
|
| 28 |
+
|
| 29 |
+

|
| 30 |
+
|
| 31 |
+
AlphaMonarch-laser is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset but achieves better performance then [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B/) using LaserQLoRA. I have fine-tuned this model only on half of the projections, but have achieved better results as compared to the version released by Maximme Labonne. I have trained this model for 1080 steps.
|
| 32 |
+
|
| 33 |
+
AlphaMonarch-laser is ranking 1 on YALL - [Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
|
| 34 |
+

|
| 35 |
+
|
| 36 |
+
## 🏆 Evaluation results
|
| 37 |
+
|
| 38 |
+
# Nous Benchmark
|
| 39 |
+
|
| 40 |
+
### AGIEVAL
|
| 41 |
+
|
| 42 |
+
| Task | Version | Metric | Value | StdErr |
|
| 43 |
+
|---------------------------------|---------|--------------|--------|--------|
|
| 44 |
+
| agieval_aqua_rat | 0 | acc | 28.35% | 2.83% |
|
| 45 |
+
| agieval_aqua_rat | 0 | acc_norm | 26.38% | 2.77% |
|
| 46 |
+
| agieval_logiqa_en | 0 | acc | 38.25% | 1.91% |
|
| 47 |
+
| agieval_logiqa_en | 0 | acc_norm | 38.10% | 1.90% |
|
| 48 |
+
| agieval_lsat_ar | 0 | acc | 23.91% | 2.82% |
|
| 49 |
+
| agieval_lsat_ar | 0 | acc_norm | 23.48% | 2.80% |
|
| 50 |
+
| agieval_lsat_lr | 0 | acc | 52.75% | 2.21% |
|
| 51 |
+
| agieval_lsat_lr | 0 | acc_norm | 53.92% | 2.21% |
|
| 52 |
+
| agieval_lsat_rc | 0 | acc | 66.91% | 2.87% |
|
| 53 |
+
| agieval_lsat_rc | 0 | acc_norm | 67.29% | 2.87% |
|
| 54 |
+
| agieval_sat_en | 0 | acc | 78.64% | 2.86% |
|
| 55 |
+
| agieval_sat_en | 0 | acc_norm | 78.64% | 2.86% |
|
| 56 |
+
| agieval_sat_en_without_passage | 0 | acc | 45.15% | 3.48% |
|
| 57 |
+
| agieval_sat_en_without_passage | 0 | acc_norm | 44.17% | 3.47% |
|
| 58 |
+
| agieval_sat_math | 0 | acc | 33.18% | 3.18% |
|
| 59 |
+
| agieval_sat_math | 0 | acc_norm | 31.36% | 3.14% |
|
| 60 |
+
Average: 28.41%
|
| 61 |
+
|
| 62 |
+
### GPT4ALL
|
| 63 |
+
|
| 64 |
+
| Task | Version | Metric | Value | StdErr |
|
| 65 |
+
|--------------|---------|----------|-------|--------|
|
| 66 |
+
| arc_challenge| 0 | acc | 66.30%| ± 1.38%|
|
| 67 |
+
| | | acc_norm | 68.26%| ± 1.36%|
|
| 68 |
+
| arc_easy | 0 | acc | 86.57%| ± 0.70%|
|
| 69 |
+
| | | acc_norm | 80.81%| ± 0.81%|
|
| 70 |
+
| boolq | 1 | acc | 87.16%| ± 0.59%|
|
| 71 |
+
| hellaswag | 0 | acc | 69.60%| ± 0.46%|
|
| 72 |
+
| | | acc_norm | 87.45%| ± 0.33%|
|
| 73 |
+
| openbookqa | 0 | acc | 39.20%| ± 2.19%|
|
| 74 |
+
| | | acc_norm | 49.60%| ± 2.24%|
|
| 75 |
+
| piqa | 0 | acc | 83.03%| ± 0.88%|
|
| 76 |
+
| | | acc_norm | 84.87%| ± 0.84%|
|
| 77 |
+
| winogrande | 0 | acc | 81.06%| ± 1.10%|
|
| 78 |
+
Average: 76.98%
|
| 79 |
+
|
| 80 |
+
### TRUTHFUL-QA
|
| 81 |
+
|
| 82 |
+
| Task | Version | Metric | Value | StdErr |
|
| 83 |
+
|---------------|---------|--------|-------|--------|
|
| 84 |
+
| truthfulqa_mc | 1 | mc1 | 63.04%| ± 1.69%|
|
| 85 |
+
| truthfulqa_mc | 1 | mc2 | 78.39%| ± 1.37%|
|
| 86 |
+
Average: 70.71%
|
| 87 |
+
|
| 88 |
+
### BIGBENCH
|
| 89 |
+
|
| 90 |
+
| Task | Version | Metric | Value | StdErr |
|
| 91 |
+
|------------------------------------------------|---------|-----------------------|-------|--------------------|
|
| 92 |
+
| bigbench_causal_judgement | 0 | multiple_choice_grade| 60.00%| ± 3.56% |
|
| 93 |
+
| bigbench_date_understanding | 0 | multiple_choice_grade| 62.06%| ± 2.53% |
|
| 94 |
+
| bigbench_disambiguation_qa | 0 | multiple_choice_grade| 54.26%| ± 3.11% |
|
| 95 |
+
| bigbench_geometric_shapes | 0 | multiple_choice_grade| 23.96%| ± 2.26% |
|
| 96 |
+
| | | exact_str_match | 0.00% | ± 0.00% |
|
| 97 |
+
| bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade| 32.80%| ± 2.10% |
|
| 98 |
+
| bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade| 23.86%| ± 1.61% |
|
| 99 |
+
| bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade| 59.33%| ± 2.84% |
|
| 100 |
+
| bigbench_movie_recommendation | 0 | multiple_choice_grade| 58.00%| ± 2.21% |
|
| 101 |
+
| bigbench_navigate | 0 | multiple_choice_grade| 56.00%| ± 1.57% |
|
| 102 |
+
| bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade| 69.20%| ± 1.03% |
|
| 103 |
+
| bigbench_ruin_names | 0 | multiple_choice_grade| 55.36%| ± 2.35% |
|
| 104 |
+
| bigbench_salient_translation_error_detection | 0 | multiple_choice_grade| 41.48%| ± 1.56% |
|
| 105 |
+
| bigbench_snarks | 0 | multiple_choice_grade| 73.48%| ± 3.29% |
|
| 106 |
+
| bigbench_sports_understanding | 0 | multiple_choice_grade| 76.06%| ± 1.36% |
|
| 107 |
+
| bigbench_temporal_sequences | 0 | multiple_choice_grade| 55.50%| ± 1.57% |
|
| 108 |
+
| bigbench_tracking_shuffled_objects_five_objects| 0 | multiple_choice_grade| 23.28%| ± 1.20% |
|
| 109 |
+
| bigbench_tracking_shuffled_objects_seven_objects| 0 | multiple_choice_grade| 19.37%| ± 0.94% |
|
| 110 |
+
| bigbench_tracking_shuffled_objects_three_objects| 0 | multiple_choice_grade| 59.33%| ± 2.84% |
|
| 111 |
+
Average: 55.37%
|
| 112 |
+
|
| 113 |
+
# Openllm Benchmark
|
| 114 |
+
|
| 115 |
+
| Task |Version| Metric |Value| |Stderr|
|
| 116 |
+
|-------------|------:|--------|----:|---|-----:|
|
| 117 |
+
|arc_challenge| 0|acc |70.12|± | 1.30|
|
| 118 |
+
| | |acc_norm|73.27|± | 1.29|
|
| 119 |
+
|hellaswag | 0|acc |71.80|± | 0.44|
|
| 120 |
+
| | |acc_norm|89.20|± | 0.30|
|
| 121 |
+
|gsm8k | 0|acc |66.77|± | 1.2 |
|
| 122 |
+
|winogrande | 0|acc |84.6 |± | 1.0 |
|
| 123 |
+
|
| 124 |
+
Average: 73.5%
|
| 125 |
+
|
| 126 |
+
### TruthfulQA
|
| 127 |
+
| Task |Version|Metric|Value| |Stderr|
|
| 128 |
+
|-------------|------:|------|----:|---|-----:|
|
| 129 |
+
|truthfulqa_mc| 1|mc1 |62.79|± | 1.69|
|
| 130 |
+
| | |mc2 |77.90|± | 1.37|
|
| 131 |
+
|
| 132 |
+
### Training hyperparameters
|
| 133 |
+
|
| 134 |
+
The following hyperparameters were used during training:
|
| 135 |
+
- learning_rate: 5e-07
|
| 136 |
+
- train_batch_size: 1
|
| 137 |
+
- eval_batch_size: 8
|
| 138 |
+
- seed: 42
|
| 139 |
+
- gradient_accumulation_steps: 8
|
| 140 |
+
- total_train_batch_size: 8
|
| 141 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 142 |
+
- lr_scheduler_type: cosine
|
| 143 |
+
- lr_scheduler_warmup_steps: 100
|
| 144 |
+
- training_steps: 1080
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
### 📝 Axolotl Configuration
|
| 149 |
+
|
| 150 |
+
```yaml
|
| 151 |
+
base_model: mlabonne/NeuralMonarch-7B
|
| 152 |
+
model_type: MistralForCausalLM
|
| 153 |
+
tokenizer_type: LlamaTokenizer
|
| 154 |
+
is_mistral_derived_model: true
|
| 155 |
+
load_in_8bit: false
|
| 156 |
+
load_in_4bit: true
|
| 157 |
+
strict: false
|
| 158 |
+
rl: dpo
|
| 159 |
+
chat_template: chatml
|
| 160 |
+
datasets:
|
| 161 |
+
- path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
|
| 162 |
+
split: train
|
| 163 |
+
type: chatml.intel
|
| 164 |
+
dataset_prepared_path:
|
| 165 |
+
val_set_size: 0.01
|
| 166 |
+
output_dir: ./out
|
| 167 |
+
adapter: qlora
|
| 168 |
+
lora_model_dir:
|
| 169 |
+
sequence_len: 1800
|
| 170 |
+
sample_packing: false
|
| 171 |
+
pad_to_sequence_len: false
|
| 172 |
+
lora_r: 16
|
| 173 |
+
lora_alpha: 16
|
| 174 |
+
lora_dropout: 0.05
|
| 175 |
+
lora_target_linear: true
|
| 176 |
+
lora_fan_in_fan_out:
|
| 177 |
+
lora_target_modules:
|
| 178 |
+
- layers.1.self_attn.q_proj
|
| 179 |
+
- layers.0.self_attn.q_proj
|
| 180 |
+
- layers.15.self_attn.q_proj
|
| 181 |
+
- layers.12.self_attn.q_proj
|
| 182 |
+
- layers.11.self_attn.q_proj
|
| 183 |
+
- layers.14.self_attn.q_proj
|
| 184 |
+
- layers.9.self_attn.q_proj
|
| 185 |
+
- layers.16.self_attn.q_proj
|
| 186 |
+
- layers.30.self_attn.q_proj
|
| 187 |
+
- layers.18.self_attn.q_proj
|
| 188 |
+
- layers.13.self_attn.q_proj
|
| 189 |
+
- layers.10.self_attn.q_proj
|
| 190 |
+
- layers.7.self_attn.q_proj
|
| 191 |
+
- layers.8.self_attn.q_proj
|
| 192 |
+
- layers.4.self_attn.q_proj
|
| 193 |
+
- layers.19.self_attn.q_proj
|
| 194 |
+
- layers.27.self_attn.k_proj
|
| 195 |
+
- layers.24.self_attn.k_proj
|
| 196 |
+
- layers.25.self_attn.k_proj
|
| 197 |
+
- layers.22.self_attn.k_proj
|
| 198 |
+
- layers.26.self_attn.k_proj
|
| 199 |
+
- layers.29.self_attn.k_proj
|
| 200 |
+
- layers.23.self_attn.k_proj
|
| 201 |
+
- layers.28.self_attn.k_proj
|
| 202 |
+
- layers.21.self_attn.k_proj
|
| 203 |
+
- layers.31.self_attn.k_proj
|
| 204 |
+
- layers.30.self_attn.k_proj
|
| 205 |
+
- layers.20.self_attn.k_proj
|
| 206 |
+
- layers.5.self_attn.k_proj
|
| 207 |
+
- layers.19.self_attn.k_proj
|
| 208 |
+
- layers.17.self_attn.k_proj
|
| 209 |
+
- layers.18.self_attn.k_proj
|
| 210 |
+
- layers.19.self_attn.v_proj
|
| 211 |
+
- layers.24.self_attn.v_proj
|
| 212 |
+
- layers.18.self_attn.v_proj
|
| 213 |
+
- layers.5.self_attn.v_proj
|
| 214 |
+
- layers.3.self_attn.v_proj
|
| 215 |
+
- layers.16.self_attn.v_proj
|
| 216 |
+
- layers.23.self_attn.v_proj
|
| 217 |
+
- layers.27.self_attn.v_proj
|
| 218 |
+
- layers.25.self_attn.v_proj
|
| 219 |
+
- layers.26.self_attn.v_proj
|
| 220 |
+
- layers.20.self_attn.v_proj
|
| 221 |
+
- layers.6.self_attn.v_proj
|
| 222 |
+
- layers.15.self_attn.v_proj
|
| 223 |
+
- layers.17.self_attn.v_proj
|
| 224 |
+
- layers.29.self_attn.v_proj
|
| 225 |
+
- layers.22.self_attn.v_proj
|
| 226 |
+
- layers.12.self_attn.o_proj
|
| 227 |
+
- layers.9.self_attn.o_proj
|
| 228 |
+
- layers.14.self_attn.o_proj
|
| 229 |
+
- layers.0.self_attn.o_proj
|
| 230 |
+
- layers.6.self_attn.o_proj
|
| 231 |
+
- layers.8.self_attn.o_proj
|
| 232 |
+
- layers.10.self_attn.o_proj
|
| 233 |
+
- layers.11.self_attn.o_proj
|
| 234 |
+
- layers.13.self_attn.o_proj
|
| 235 |
+
- layers.24.self_attn.o_proj
|
| 236 |
+
- layers.7.self_attn.o_proj
|
| 237 |
+
- layers.15.self_attn.o_proj
|
| 238 |
+
- layers.5.self_attn.o_proj
|
| 239 |
+
- layers.17.self_attn.o_proj
|
| 240 |
+
- layers.25.self_attn.o_proj
|
| 241 |
+
- layers.4.self_attn.o_proj
|
| 242 |
+
- layers.31.mlp.gate_proj
|
| 243 |
+
- layers.30.mlp.gate_proj
|
| 244 |
+
- layers.4.mlp.gate_proj
|
| 245 |
+
- layers.3.mlp.gate_proj
|
| 246 |
+
- layers.29.mlp.gate_proj
|
| 247 |
+
- layers.28.mlp.gate_proj
|
| 248 |
+
- layers.6.mlp.gate_proj
|
| 249 |
+
- layers.27.mlp.gate_proj
|
| 250 |
+
- layers.5.mlp.gate_proj
|
| 251 |
+
- layers.26.mlp.gate_proj
|
| 252 |
+
- layers.25.mlp.gate_proj
|
| 253 |
+
- layers.7.mlp.gate_proj
|
| 254 |
+
- layers.2.mlp.gate_proj
|
| 255 |
+
- layers.24.mlp.gate_proj
|
| 256 |
+
- layers.23.mlp.gate_proj
|
| 257 |
+
- layers.10.mlp.gate_proj
|
| 258 |
+
- layers.6.mlp.up_proj
|
| 259 |
+
- layers.4.mlp.up_proj
|
| 260 |
+
- layers.5.mlp.up_proj
|
| 261 |
+
- layers.27.mlp.up_proj
|
| 262 |
+
- layers.25.mlp.up_proj
|
| 263 |
+
- layers.26.mlp.up_proj
|
| 264 |
+
- layers.17.mlp.up_proj
|
| 265 |
+
- layers.24.mlp.up_proj
|
| 266 |
+
- layers.7.mlp.up_proj
|
| 267 |
+
- layers.10.mlp.up_proj
|
| 268 |
+
- layers.3.mlp.up_proj
|
| 269 |
+
- layers.11.mlp.up_proj
|
| 270 |
+
- layers.23.mlp.up_proj
|
| 271 |
+
- layers.9.mlp.up_proj
|
| 272 |
+
- layers.14.mlp.up_proj
|
| 273 |
+
- layers.18.mlp.up_proj
|
| 274 |
+
- layers.19.mlp.down_proj
|
| 275 |
+
- layers.20.mlp.down_proj
|
| 276 |
+
- layers.18.mlp.down_proj
|
| 277 |
+
- layers.21.mlp.down_proj
|
| 278 |
+
- layers.29.mlp.down_proj
|
| 279 |
+
- layers.1.mlp.down_proj
|
| 280 |
+
- layers.22.mlp.down_proj
|
| 281 |
+
- layers.28.mlp.down_proj
|
| 282 |
+
- layers.23.mlp.down_proj
|
| 283 |
+
- layers.30.mlp.down_proj
|
| 284 |
+
- layers.17.mlp.down_proj
|
| 285 |
+
- layers.4.mlp.down_proj
|
| 286 |
+
- layers.2.mlp.down_proj
|
| 287 |
+
- layers.15.mlp.down_proj
|
| 288 |
+
- layers.5.mlp.down_proj
|
| 289 |
+
wandb_project: axolotl
|
| 290 |
+
wandb_entity:
|
| 291 |
+
wandb_watch:
|
| 292 |
+
wandb_name:
|
| 293 |
+
wandb_log_model:
|
| 294 |
+
gradient_accumulation_steps: 8
|
| 295 |
+
micro_batch_size: 1
|
| 296 |
+
num_epochs: 1
|
| 297 |
+
optimizer: paged_adamw_32bit
|
| 298 |
+
lr_scheduler: cosine
|
| 299 |
+
learning_rate: 5e-7
|
| 300 |
+
train_on_inputs: false
|
| 301 |
+
group_by_length: false
|
| 302 |
+
bf16: true
|
| 303 |
+
fp16: false
|
| 304 |
+
tf32: true
|
| 305 |
+
gradient_checkpointing: true
|
| 306 |
+
early_stopping_patience:
|
| 307 |
+
resume_from_checkpoint:
|
| 308 |
+
local_rank:
|
| 309 |
+
logging_steps: 1
|
| 310 |
+
xformers_attention:
|
| 311 |
+
flash_attention: true
|
| 312 |
+
warmup_steps: 100
|
| 313 |
+
evals_per_epoch: 1
|
| 314 |
+
eval_table_size:
|
| 315 |
+
eval_table_max_new_tokens: 128
|
| 316 |
+
save_steps: 1080
|
| 317 |
+
max_steps: 1080
|
| 318 |
+
debug:
|
| 319 |
+
deepspeed:
|
| 320 |
+
weight_decay: 0.0
|
| 321 |
+
fsdp:
|
| 322 |
+
fsdp_config:
|
| 323 |
+
special_tokens:
|
| 324 |
+
```
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
### Framework versions
|
| 328 |
+
|
| 329 |
+
- Transformers 4.38.0.dev0
|
| 330 |
+
- Pytorch 2.1.2+cu118
|
| 331 |
+
- Datasets 2.17.0
|
| 332 |
+
- Tokenizers 0.15.0
|
| 333 |
+
- axolotl: 0.4.0
|
| 334 |
+
|
| 335 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|