File size: 11,040 Bytes
5154f51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from typing import Optional

from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation

class PrismaVLVisionConfig(PretrainedConfig):
    model_type = "qwen3_vl"
    base_config_key = "vision_config"

    def __init__(
        self,
        depth=27,
        hidden_size=1152,
        hidden_act="gelu_pytorch_tanh",
        intermediate_size=4304,
        num_heads=16,
        in_channels=3,
        patch_size=16,
        spatial_merge_size=2,
        temporal_patch_size=2,
        out_hidden_size=3584,
        num_position_embeddings=2304,
        deepstack_visual_indexes=[8, 16, 24],
        initializer_range=0.02,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.depth = depth
        self.hidden_size = hidden_size
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.num_heads = num_heads
        self.in_channels = in_channels
        self.patch_size = patch_size
        self.spatial_merge_size = spatial_merge_size
        self.temporal_patch_size = temporal_patch_size
        self.out_hidden_size = out_hidden_size
        self.num_position_embeddings = num_position_embeddings
        self.initializer_range = initializer_range
        self.deepstack_visual_indexes = deepstack_visual_indexes


class PrismaVLTextConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`PrismaVLTextModel`]. It is used to instantiate a
    Prisma-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of
    Prisma-VL-4B-Instruct [Qwen/Prisma-VL-4B-Instruct](https://huggingface.co/Qwen/Prisma-VL-4B-Instruct).

    Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PreTrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 151936):
            Vocabulary size of the PrismaVL model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`PrismaVLModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 22016):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 32):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details, check out [this
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
        head_dim (`int`, *optional*, defaults to 128):
            The dimension of the head. If not specified, will default to `hidden_size // num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 128000):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 5000000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Contains parameters for
            scaling RoPE to work with longer sequences.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import PrismaVLTextModel, PrismaVLTextConfig

    >>> # Initializing a PrismaVL style configuration
    >>> configuration = PrismaVLTextConfig()

    >>> # Initializing a model from the Prisma-VL-7B style configuration
    >>> model = PrismaVLTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "qwen3_vl_text"
    base_config_key = "text_config"

    def __init__(
        self,
        vocab_size: Optional[int] = 151936,
        hidden_size: Optional[int] = 4096,
        intermediate_size: Optional[int] = 22016,
        num_hidden_layers: Optional[int] = 32,
        num_attention_heads: Optional[int] = 32,
        num_key_value_heads: Optional[int] = 32,
        head_dim: Optional[int] = 128,
        hidden_act: Optional[str] = "silu",
        max_position_embeddings: Optional[int] = 128000,
        initializer_range: Optional[float] = 0.02,
        rms_norm_eps: Optional[float] = 1e-6,
        use_cache: Optional[bool] = True,
        tie_word_embeddings: Optional[bool] = False,
        rope_theta: Optional[float] = 5000000.0,
        rope_scaling: Optional[dict] = None,
        attention_bias: Optional[bool] = False,
        attention_dropout: Optional[float] = 0.0,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.head_dim = head_dim
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling

        # Validate the correctness of rotary position embeddings parameters
        rope_config_validation(self, ignore_keys={"mrope_section", "mrope_interleaved"})

        super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)


class PrismaVLConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`PrismaVLModel`]. It is used to instantiate a
    Prisma-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of
    Prisma-VL-4B-Instruct [Qwen/Prisma-VL-4B-Instruct](https://huggingface.co/Qwen/Prisma-VL-4B-Instruct).

    Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PreTrainedConfig`] for more information.


    Args:
        text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `PrismaVLTextConfig`):
            The config object or dictionary of the text backbone.
        vision_config (`Union[PreTrainedConfig, dict]`,  *optional*, defaults to `PrismaVLVisionConfig`):
            The config object or dictionary of the vision backbone.
        image_token_id (`int`, *optional*, defaults to 151655):
            The image token index to encode the image prompt.
        video_token_id (`int`, *optional*, defaults to 151656):
            The video token index to encode the image prompt.
        vision_start_token_id (`int`, *optional*, defaults to 151652):
            The start token index to encode the image prompt.
        vision_end_token_id (`int`, *optional*, defaults to 151653):
            The end token index to encode the image prompt.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie the word embeddings.

    ```python
    >>> from transformers import PrismaVLForConditionalGeneration, PrismaVLConfig

    >>> # Initializing a Prisma-VL style configuration
    >>> configuration = PrismaVLConfig()

    >>> # Initializing a model from the Prisma-VL-4B style configuration
    >>> model = PrismaVLForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "qwen3_vl"
    sub_configs = {"vision_config": PrismaVLVisionConfig, "text_config": PrismaVLTextConfig}
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        text_config=None,
        vision_config=None,
        image_token_id=151655,
        video_token_id=151656,
        vision_start_token_id=151652,
        vision_end_token_id=151653,
        tie_word_embeddings=False,
        **kwargs,
    ):
        if isinstance(vision_config, dict):
            self.vision_config = self.sub_configs["vision_config"](**vision_config)
        elif vision_config is None:
            self.vision_config = self.sub_configs["vision_config"]()

        if isinstance(text_config, dict):
            self.text_config = self.sub_configs["text_config"](**text_config)
        elif text_config is None:
            self.text_config = self.sub_configs["text_config"]()

        self.image_token_id = image_token_id
        self.video_token_id = video_token_id
        self.vision_start_token_id = vision_start_token_id
        self.vision_end_token_id = vision_end_token_id
        super().__init__(**kwargs, tie_word_embeddings=tie_word_embeddings)


__all__ = ["PrismaVLConfig", "PrismaVLTextConfig"]