File size: 10,899 Bytes
5154f51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import math
from typing import Optional, Union

import numpy as np
import torch

from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ChannelDimension, PILImageResampling, SizeDict, get_image_size
from transformers.processing_utils import Unpack, VideosKwargs
from transformers.utils import TensorType, add_start_docstrings, logging
from transformers.video_processing_utils import BASE_VIDEO_PROCESSOR_DOCSTRING, BaseVideoProcessor
from transformers.video_utils import VideoMetadata, group_videos_by_shape, reorder_videos


logger = logging.get_logger(__name__)


def smart_resize(
    num_frames: int,
    height: int,
    width: int,
    temporal_factor: int = 2,
    factor: int = 32,
    min_pixels: int = 128 * 128,
    max_pixels: int = 16 * 16 * 2 * 2 * 2 * 6144,
):
    if num_frames < temporal_factor:
        raise ValueError(f"t:{num_frames} must be larger than temporal_factor:{temporal_factor}")
    if height < factor or width < factor:
        raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
    elif max(height, width) / min(height, width) > 200:
        raise ValueError(
            f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
        )
    h_bar = round(height / factor) * factor
    w_bar = round(width / factor) * factor
    t_bar = round(num_frames / temporal_factor) * temporal_factor

    if t_bar * h_bar * w_bar > max_pixels:
        beta = math.sqrt((num_frames * height * width) / max_pixels)
        h_bar = max(factor, math.floor(height / beta / factor) * factor)
        w_bar = max(factor, math.floor(width / beta / factor) * factor)
    elif t_bar * h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (num_frames * height * width))
        h_bar = math.ceil(height * beta / factor) * factor
        w_bar = math.ceil(width * beta / factor) * factor

    return h_bar, w_bar


class PrismaVLVideoProcessorInitKwargs(VideosKwargs, total=False):
    patch_size: int
    temporal_patch_size: int
    merge_size: int
    min_frames: int
    max_frames: int


@add_start_docstrings(
    "Constructs a fast Prisma-VL image processor that dynamically resizes videos based on the original videos.",
    BASE_VIDEO_PROCESSOR_DOCSTRING,
    """
        patch_size (`int`, *optional*, defaults to 16):
            The spacial patch size of the vision encoder.
        temporal_patch_size (`int`, *optional*, defaults to 2):
            The temporal patch size of the vision encoder.
        merge_size (`int`, *optional*, defaults to 2):
            The merge size of the vision encoder to llm encoder.
    """,
)
class PrismaVLVideoProcessor(BaseVideoProcessor):
    resample = PILImageResampling.BICUBIC
    size = {"shortest_edge": 128 * 32 * 32, "longest_edge": 32 * 32 * 768}
    image_mean = [0.5, 0.5, 0.5]
    image_std = [0.5, 0.5, 0.5]
    do_resize = True
    do_rescale = True
    do_normalize = True
    do_convert_rgb = True
    patch_size = 16
    temporal_patch_size = 2
    merge_size = 2
    fps = 2
    min_frames = 4
    max_frames = 768
    do_sample_frames = True
    valid_kwargs = PrismaVLVideoProcessorInitKwargs
    model_input_names = ["pixel_values_videos", "video_grid_thw"]

    def __init__(self, **kwargs: Unpack[PrismaVLVideoProcessorInitKwargs]):
        super().__init__(**kwargs)
        if self.size is not None and (
            self.size.get("shortest_edge", None) is None or self.size.get("longest_edge", None) is None
        ):
            raise ValueError("size must contain 'shortest_edge' and 'longest_edge' keys.")

    def _further_process_kwargs(
        self,
        size: Optional[SizeDict] = None,
        **kwargs,
    ) -> dict:
        """
        Update kwargs that need further processing before being validated
        Can be overridden by subclasses to customize the processing of kwargs.
        """
        if size is not None and ("shortest_edge" not in size or "longest_edge" not in size):
            raise ValueError("size must contain 'shortest_edge' and 'longest_edge' keys.")

        return super()._further_process_kwargs(size=size, **kwargs)

    def sample_frames(
        self,
        metadata: VideoMetadata,
        num_frames: Optional[int] = None,
        fps: Optional[Union[int, float]] = None,
        **kwargs,
    ):
        """
        Default sampling function which uniformly samples the desired number of frames between 0 and total number of frames.
        If `fps` is passed along with metadata, `fps` frames per second are sampled uniformty. Arguments `num_frames`
        and `fps` are mutually exclusive.

        Args:
            video (`torch.Tensor`):
                Video that need to be sampled.
            metadata (`VideoMetadata`):
                Metadata of the video containing information about total duration, fps and total number of frames.
            num_frames (`int`, *optional*):
                Maximum number of frames to sample. Defaults to `self.num_frames`.
            fps (`int` or `float`, *optional*):
                Target frames to sample per second. Defaults to `self.fps`.
        Returns:
            torch.Tensor:
                Sampled video frames.
        """
        if fps is not None and num_frames is not None:
            raise ValueError("`num_frames` and `fps` are mutually exclusive arguments, please use only one!")

        total_num_frames = metadata.total_num_frames
        fps = fps if fps is not None else self.fps

        # If num_frames is not given but fps is, calculate num_frames from fps
        if num_frames is None and fps is not None:
            if metadata.fps is None:
                metadata.fps = 24
                logger.warning_once(
                    "Asked to sample `fps` frames per second but no video metadata was provided which is required when sampling with `fps`. "
                    "Defaulting to `fps=24`. Please provide `video_metadata` for more accurate results."
                )
            num_frames = int(total_num_frames / metadata.fps * fps)
            num_frames = min(max(num_frames, self.min_frames), self.max_frames, total_num_frames)

        if num_frames is None:
            num_frames = min(max(total_num_frames, self.min_frames), self.max_frames)

        indices = np.linspace(0, total_num_frames - 1, num_frames).round().astype(int)

        return indices

    def _preprocess(
        self,
        videos: list[torch.Tensor],
        do_convert_rgb: bool = True,
        do_resize: bool = True,
        size: Optional[SizeDict] = None,
        interpolation: PILImageResampling = PILImageResampling.BICUBIC,
        do_rescale: bool = True,
        rescale_factor: float = 1 / 255.0,
        do_normalize: bool = True,
        image_mean: Optional[Union[float, list[float]]] = None,
        image_std: Optional[Union[float, list[float]]] = None,
        patch_size: Optional[int] = None,
        temporal_patch_size: Optional[int] = None,
        merge_size: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        **kwargs,
    ):
        grouped_videos, grouped_videos_index = group_videos_by_shape(videos)
        resized_videos_grouped = {}

        for shape, stacked_videos in grouped_videos.items():
            B, T, C, H, W = stacked_videos.shape
            num_frames, height, width = T, H, W
            if do_resize:
                resized_height, resized_width = smart_resize(
                    num_frames=num_frames,
                    height=height,
                    width=width,
                    temporal_factor=temporal_patch_size,
                    factor=patch_size * merge_size,
                    min_pixels=size.shortest_edge,
                    max_pixels=size.longest_edge,
                )
                stacked_videos = stacked_videos.view(B * T, C, H, W)
                stacked_videos = self.resize(
                    stacked_videos,
                    size=SizeDict(height=resized_height, width=resized_width),
                    interpolation=interpolation,
                )
                stacked_videos = stacked_videos.view(B, T, C, resized_height, resized_width)
            resized_videos_grouped[shape] = stacked_videos
        resized_videos = reorder_videos(resized_videos_grouped, grouped_videos_index)

        # Group videos by size for further processing
        # Needed in case do_resize is False, or resize returns videos with different sizes
        grouped_videos, grouped_videos_index = group_videos_by_shape(resized_videos)
        processed_videos_grouped = {}
        processed_grids = {}
        for shape, stacked_videos in grouped_videos.items():
            resized_height, resized_width = get_image_size(stacked_videos[0], channel_dim=ChannelDimension.FIRST)

            # Fused rescale and normalize
            stacked_videos = self.rescale_and_normalize(
                stacked_videos, do_rescale, rescale_factor, do_normalize, image_mean, image_std
            )
            patches = stacked_videos

            # Check that videos have `num_frames` divisible by `temporal_patch_size`
            if patches.shape[1] % temporal_patch_size != 0:
                repeats = patches[:, -1:].repeat(1, temporal_patch_size - 1, 1, 1, 1)
                patches = torch.cat([patches, repeats], dim=1)
            batch_size, grid_t, channel = patches.shape[:3]
            grid_t = grid_t // temporal_patch_size
            grid_h, grid_w = resized_height // patch_size, resized_width // patch_size

            patches = patches.view(
                batch_size,
                grid_t,
                temporal_patch_size,
                channel,
                grid_h // merge_size,
                merge_size,
                patch_size,
                grid_w // merge_size,
                merge_size,
                patch_size,
            )
            patches = patches.permute(0, 1, 4, 7, 5, 8, 3, 2, 6, 9)
            flatten_patches = patches.reshape(
                batch_size,
                grid_t * grid_h * grid_w,
                channel * temporal_patch_size * patch_size * patch_size,
            )

            processed_videos_grouped[shape] = flatten_patches
            processed_grids[shape] = [[grid_t, grid_h, grid_w]] * batch_size

        processed_videos = reorder_videos(processed_videos_grouped, grouped_videos_index)
        processed_grids = reorder_videos(processed_grids, grouped_videos_index)
        pixel_values_videos = torch.cat(processed_videos, dim=0)
        video_grid_thw = torch.tensor(processed_grids)
        data = {
            "pixel_values_videos": pixel_values_videos,
            "video_grid_thw": video_grid_thw,
        }

        return BatchFeature(data=data, tensor_type=return_tensors)


__all__ = ["PrismaVLVideoProcessor"]