from transformers import AutoModelForImageTextToText, AutoProcessor model = AutoModelForImageTextToText.from_pretrained( "QuixiAI/Prisma-VL-8B", dtype="auto", device_map="auto" ) processor = AutoProcessor.from_pretrained("QuixiAI/Prisma-VL-8B") messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438", }, { "type": "text", "text": ( "Describe your thoughts and your experience of thinking. " "The phenomenology is more important than the actual answer." ), }, ], } ] inputs = processor.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt" ) inputs = inputs.to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=1280) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text)