Upload folder using huggingface_hub
Browse files- config.json +29 -0
- configuration_RW.py +75 -0
- generation_config.json +6 -0
- latest +1 -0
- modelling_RW.py +1106 -0
- pytorch_model-00001-of-00018.bin +3 -0
- pytorch_model-00002-of-00018.bin +3 -0
- pytorch_model-00003-of-00018.bin +3 -0
- pytorch_model-00004-of-00018.bin +3 -0
- pytorch_model-00005-of-00018.bin +3 -0
- pytorch_model-00006-of-00018.bin +3 -0
- pytorch_model-00007-of-00018.bin +3 -0
- pytorch_model-00008-of-00018.bin +3 -0
- pytorch_model-00009-of-00018.bin +3 -0
- pytorch_model-00010-of-00018.bin +3 -0
- pytorch_model-00011-of-00018.bin +3 -0
- pytorch_model-00012-of-00018.bin +3 -0
- pytorch_model-00013-of-00018.bin +3 -0
- pytorch_model-00014-of-00018.bin +3 -0
- pytorch_model-00015-of-00018.bin +3 -0
- pytorch_model-00016-of-00018.bin +3 -0
- pytorch_model-00017-of-00018.bin +3 -0
- pytorch_model-00018-of-00018.bin +3 -0
- pytorch_model.bin.index.json +491 -0
- special_tokens_map.json +17 -0
- tokenizer.json +0 -0
- tokenizer_config.json +8 -0
- trainer_state.json +658 -0
- training_args.bin +3 -0
- zero_to_fp32.py +584 -0
config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/workspace/WizardLM-Uncensored-falcon-40b",
|
| 3 |
+
"alibi": false,
|
| 4 |
+
"apply_residual_connection_post_layernorm": false,
|
| 5 |
+
"architectures": [
|
| 6 |
+
"RWForCausalLM"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.0,
|
| 9 |
+
"auto_map": {
|
| 10 |
+
"AutoConfig": "configuration_RW.RWConfig",
|
| 11 |
+
"AutoModelForCausalLM": "modelling_RW.RWForCausalLM"
|
| 12 |
+
},
|
| 13 |
+
"bias": false,
|
| 14 |
+
"bos_token_id": 1,
|
| 15 |
+
"eos_token_id": 2,
|
| 16 |
+
"hidden_dropout": 0.0,
|
| 17 |
+
"hidden_size": 8192,
|
| 18 |
+
"initializer_range": 0.02,
|
| 19 |
+
"layer_norm_epsilon": 1e-05,
|
| 20 |
+
"model_type": "RefinedWeb",
|
| 21 |
+
"n_head": 128,
|
| 22 |
+
"n_head_kv": 8,
|
| 23 |
+
"n_layer": 60,
|
| 24 |
+
"parallel_attn": true,
|
| 25 |
+
"torch_dtype": "float32",
|
| 26 |
+
"transformers_version": "4.30.0.dev0",
|
| 27 |
+
"use_cache": true,
|
| 28 |
+
"vocab_size": 65025
|
| 29 |
+
}
|
configuration_RW.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" Bloom configuration"""
|
| 16 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 17 |
+
from transformers.utils import logging
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class RWConfig(PretrainedConfig):
|
| 24 |
+
model_type = "RefinedWeb"
|
| 25 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 26 |
+
attribute_map = {
|
| 27 |
+
"num_hidden_layers": "n_layer",
|
| 28 |
+
"num_attention_heads": "n_head",
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
def __init__(
|
| 32 |
+
self,
|
| 33 |
+
vocab_size=250880,
|
| 34 |
+
hidden_size=64,
|
| 35 |
+
n_layer=2,
|
| 36 |
+
n_head=8,
|
| 37 |
+
layer_norm_epsilon=1e-5,
|
| 38 |
+
initializer_range=0.02,
|
| 39 |
+
use_cache=True,
|
| 40 |
+
bos_token_id=1,
|
| 41 |
+
eos_token_id=2,
|
| 42 |
+
apply_residual_connection_post_layernorm=False,
|
| 43 |
+
hidden_dropout=0.0,
|
| 44 |
+
attention_dropout=0.0,
|
| 45 |
+
n_head_kv=None,
|
| 46 |
+
alibi=False,
|
| 47 |
+
**kwargs,
|
| 48 |
+
):
|
| 49 |
+
self.vocab_size = vocab_size
|
| 50 |
+
# Backward compatibility with n_embed kwarg
|
| 51 |
+
n_embed = kwargs.pop("n_embed", None)
|
| 52 |
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
| 53 |
+
self.n_layer = n_layer
|
| 54 |
+
self.n_head = n_head
|
| 55 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 56 |
+
self.initializer_range = initializer_range
|
| 57 |
+
self.use_cache = use_cache
|
| 58 |
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
| 59 |
+
self.hidden_dropout = hidden_dropout
|
| 60 |
+
self.attention_dropout = attention_dropout
|
| 61 |
+
|
| 62 |
+
self.bos_token_id = bos_token_id
|
| 63 |
+
self.eos_token_id = eos_token_id
|
| 64 |
+
self.n_head_kv = n_head if n_head_kv is None else n_head_kv
|
| 65 |
+
self.alibi = alibi
|
| 66 |
+
|
| 67 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
| 68 |
+
|
| 69 |
+
@property
|
| 70 |
+
def head_dim(self):
|
| 71 |
+
return self.hidden_size // self.n_head
|
| 72 |
+
|
| 73 |
+
@property
|
| 74 |
+
def rotary(self):
|
| 75 |
+
return not self.alibi
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"transformers_version": "4.30.0.dev0"
|
| 6 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step214
|
modelling_RW.py
ADDED
|
@@ -0,0 +1,1106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# port of models described in RW
|
| 2 |
+
# We use the bloom model as a starting point for these model.
|
| 3 |
+
# Please refer to the bloom models for usage instructions.
|
| 4 |
+
|
| 5 |
+
import math
|
| 6 |
+
import warnings
|
| 7 |
+
from typing import Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.utils.checkpoint
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
| 13 |
+
from torch.nn import functional as F
|
| 14 |
+
|
| 15 |
+
from transformers.modeling_outputs import (
|
| 16 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 17 |
+
CausalLMOutputWithCrossAttentions,
|
| 18 |
+
QuestionAnsweringModelOutput,
|
| 19 |
+
SequenceClassifierOutputWithPast,
|
| 20 |
+
TokenClassifierOutput,
|
| 21 |
+
)
|
| 22 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 23 |
+
from transformers.utils import logging
|
| 24 |
+
from .configuration_RW import RWConfig
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
|
| 29 |
+
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
|
| 30 |
+
class Linear(nn.Linear):
|
| 31 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
| 32 |
+
ret = input @ self.weight.T
|
| 33 |
+
if self.bias is None:
|
| 34 |
+
return ret
|
| 35 |
+
else:
|
| 36 |
+
return ret + self.bias
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
from einops import rearrange
|
| 40 |
+
|
| 41 |
+
# rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...)
|
| 42 |
+
def rotate_half(x):
|
| 43 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
| 44 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in torch < 1.8.0
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 48 |
+
"""Implementation of RotaryEmbedding from GPT-NeoX.
|
| 49 |
+
This implementation is design to operate on queries and keys that are compatible with
|
| 50 |
+
[batch_size, n_heads_per_partition, seq_len, head_dim] (e.g. MinGPTAttention format).
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
def __init__(
|
| 54 |
+
self,
|
| 55 |
+
head_dim: int,
|
| 56 |
+
base=10000,
|
| 57 |
+
):
|
| 58 |
+
super().__init__()
|
| 59 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
|
| 60 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 61 |
+
self.head_dim = head_dim
|
| 62 |
+
self.seq_len_cached = None
|
| 63 |
+
self.batch_size_cached = None
|
| 64 |
+
self.cos_cached: torch.Tensor | None = None
|
| 65 |
+
self.sin_cached: torch.Tensor | None = None
|
| 66 |
+
|
| 67 |
+
def cos_sin(
|
| 68 |
+
self,
|
| 69 |
+
seq_len: int,
|
| 70 |
+
device="cuda",
|
| 71 |
+
dtype=torch.bfloat16,
|
| 72 |
+
) -> torch.Tensor:
|
| 73 |
+
if seq_len != self.seq_len_cached:
|
| 74 |
+
self.seq_len_cached = seq_len
|
| 75 |
+
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
|
| 76 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 77 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(device)
|
| 78 |
+
|
| 79 |
+
if dtype in [torch.float16, torch.bfloat16]:
|
| 80 |
+
emb = emb.float()
|
| 81 |
+
|
| 82 |
+
self.cos_cached = emb.cos()[None, :, :]
|
| 83 |
+
self.sin_cached = emb.sin()[None, :, :]
|
| 84 |
+
|
| 85 |
+
self.cos_cached = self.cos_cached.type(dtype)
|
| 86 |
+
self.sin_cached = self.sin_cached.type(dtype)
|
| 87 |
+
|
| 88 |
+
return self.cos_cached, self.sin_cached
|
| 89 |
+
|
| 90 |
+
def forward(self, q, k):
|
| 91 |
+
batch, seq_len, head_dim = q.shape
|
| 92 |
+
cos, sin = self.cos_sin(seq_len, q.device, q.dtype)
|
| 93 |
+
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def _make_causal_mask(
|
| 97 |
+
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
| 98 |
+
) -> torch.BoolTensor:
|
| 99 |
+
batch_size, target_length = input_ids_shape
|
| 100 |
+
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
|
| 101 |
+
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
|
| 102 |
+
seq_ids = torch.arange(target_length, device=device)
|
| 103 |
+
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
|
| 104 |
+
|
| 105 |
+
if past_key_values_length > 0:
|
| 106 |
+
mask[:, :past_key_values_length] = False
|
| 107 |
+
|
| 108 |
+
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
|
| 109 |
+
return expanded_mask
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
|
| 113 |
+
batch_size, src_length = mask.shape
|
| 114 |
+
tgt_length = tgt_length if tgt_length is not None else src_length
|
| 115 |
+
|
| 116 |
+
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
| 117 |
+
return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
| 121 |
+
batch_size, seq_length = attention_mask.shape
|
| 122 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
| 123 |
+
base = torch.tensor(
|
| 124 |
+
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
| 125 |
+
)
|
| 126 |
+
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
| 127 |
+
slopes = torch.pow(base, powers)
|
| 128 |
+
|
| 129 |
+
if closest_power_of_2 != num_heads:
|
| 130 |
+
extra_base = torch.tensor(
|
| 131 |
+
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
| 132 |
+
)
|
| 133 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
| 134 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
|
| 135 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
| 136 |
+
|
| 137 |
+
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
| 138 |
+
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
| 139 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
| 140 |
+
# => the query_length dimension will then be broadcasted correctly
|
| 141 |
+
# This is more or less identical to T5's relative position bias:
|
| 142 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
| 143 |
+
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
| 144 |
+
alibi = slopes[..., None].bfloat16() * arange_tensor
|
| 145 |
+
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
| 149 |
+
out = F.dropout(x, p=prob, training=training)
|
| 150 |
+
out = residual + out
|
| 151 |
+
return out
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
class Attention(nn.Module):
|
| 155 |
+
def __init__(self, config: RWConfig):
|
| 156 |
+
super().__init__()
|
| 157 |
+
|
| 158 |
+
self.hidden_size = config.hidden_size
|
| 159 |
+
self.num_heads = config.n_head
|
| 160 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 161 |
+
self.split_size = self.hidden_size
|
| 162 |
+
self.hidden_dropout = config.hidden_dropout
|
| 163 |
+
|
| 164 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
| 167 |
+
f" {self.num_heads})."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
self.maybe_rotary = RotaryEmbedding(config.head_dim) if config.rotary else lambda q, k: (q, k)
|
| 171 |
+
|
| 172 |
+
# Layer-wise attention scaling
|
| 173 |
+
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
| 174 |
+
self.beta = self.inv_norm_factor
|
| 175 |
+
|
| 176 |
+
self.query_key_value = Linear(
|
| 177 |
+
self.hidden_size,
|
| 178 |
+
(config.n_head_kv * 2 + config.n_head) * self.head_dim,
|
| 179 |
+
bias=config.bias,
|
| 180 |
+
)
|
| 181 |
+
self.dense = Linear(self.hidden_size, self.hidden_size, bias=config.bias)
|
| 182 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
| 183 |
+
self.num_kv = config.n_head_kv
|
| 184 |
+
|
| 185 |
+
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 186 |
+
"""
|
| 187 |
+
Split the last dimension into (num_heads, head_dim), results share same memory
|
| 188 |
+
storage as `fused_qkv`
|
| 189 |
+
|
| 190 |
+
Args:
|
| 191 |
+
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
query: [batch_size, seq_length, num_heads, head_dim]
|
| 195 |
+
key: [batch_size, seq_length, num_heads, head_dim]
|
| 196 |
+
value: [batch_size, seq_length, num_heads, head_dim]
|
| 197 |
+
"""
|
| 198 |
+
batch, seq_len, _ = fused_qkv.shape
|
| 199 |
+
qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv + 2, 64)
|
| 200 |
+
q = qkv[:, :, :, :-2]
|
| 201 |
+
k = qkv[:, :, :, [-2]]
|
| 202 |
+
v = qkv[:, :, :, [-1]]
|
| 203 |
+
k = torch.broadcast_to(k, q.shape)
|
| 204 |
+
v = torch.broadcast_to(v, q.shape)
|
| 205 |
+
|
| 206 |
+
q, k, v = [
|
| 207 |
+
rearrange(
|
| 208 |
+
x,
|
| 209 |
+
"batch seq_len group num_heads head_dim ->\
|
| 210 |
+
batch seq_len (group num_heads) head_dim",
|
| 211 |
+
head_dim=self.head_dim,
|
| 212 |
+
)
|
| 213 |
+
for x in [q, k, v]
|
| 214 |
+
]
|
| 215 |
+
return q, k, v
|
| 216 |
+
|
| 217 |
+
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
| 218 |
+
"""
|
| 219 |
+
Merge heads together over the last dimenstion
|
| 220 |
+
|
| 221 |
+
Args:
|
| 222 |
+
x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
| 223 |
+
|
| 224 |
+
Returns:
|
| 225 |
+
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
| 226 |
+
"""
|
| 227 |
+
# What we want to achieve is:
|
| 228 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
|
| 229 |
+
batch_size_and_num_heads, seq_length, _ = x.shape
|
| 230 |
+
batch_size = batch_size_and_num_heads // self.num_heads
|
| 231 |
+
|
| 232 |
+
# First view to decompose the batch size
|
| 233 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
|
| 234 |
+
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
|
| 235 |
+
|
| 236 |
+
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
|
| 237 |
+
x = x.permute(0, 2, 1, 3)
|
| 238 |
+
|
| 239 |
+
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
|
| 240 |
+
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
|
| 241 |
+
|
| 242 |
+
def forward(
|
| 243 |
+
self,
|
| 244 |
+
hidden_states: torch.Tensor,
|
| 245 |
+
alibi: torch.Tensor,
|
| 246 |
+
attention_mask: torch.Tensor,
|
| 247 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 248 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 249 |
+
use_cache: bool = False,
|
| 250 |
+
output_attentions: bool = False,
|
| 251 |
+
):
|
| 252 |
+
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
| 253 |
+
|
| 254 |
+
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
| 255 |
+
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
| 256 |
+
|
| 257 |
+
batch_size, q_length, _, _ = query_layer.shape
|
| 258 |
+
|
| 259 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
| 260 |
+
key_layer = key_layer.transpose(1, 2).reshape(
|
| 261 |
+
batch_size * self.num_heads,
|
| 262 |
+
q_length,
|
| 263 |
+
self.head_dim,
|
| 264 |
+
)
|
| 265 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
| 266 |
+
|
| 267 |
+
query_layer, key_layer = self.maybe_rotary(query_layer, key_layer)
|
| 268 |
+
|
| 269 |
+
if layer_past is not None:
|
| 270 |
+
past_key, past_value = layer_past
|
| 271 |
+
# concatenate along seq_length dimension:
|
| 272 |
+
# - key: [batch_size * self.num_heads, head_dim, kv_length]
|
| 273 |
+
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
| 274 |
+
key_layer = torch.cat((past_key, key_layer), dim=1)
|
| 275 |
+
value_layer = torch.cat((past_value, value_layer), dim=1)
|
| 276 |
+
|
| 277 |
+
_, kv_length, _ = key_layer.shape
|
| 278 |
+
|
| 279 |
+
if use_cache is True:
|
| 280 |
+
present = (key_layer, value_layer)
|
| 281 |
+
else:
|
| 282 |
+
present = None
|
| 283 |
+
|
| 284 |
+
if alibi is None:
|
| 285 |
+
query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
|
| 286 |
+
key_layer_ = key_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
|
| 287 |
+
value_layer_ = value_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
|
| 288 |
+
|
| 289 |
+
attn_output = F.scaled_dot_product_attention(
|
| 290 |
+
query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim)
|
| 294 |
+
x = x.permute(0, 2, 1, 3)
|
| 295 |
+
attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim)
|
| 296 |
+
|
| 297 |
+
output_tensor = self.dense(attn_output)
|
| 298 |
+
|
| 299 |
+
outputs = (output_tensor, present)
|
| 300 |
+
assert not output_attentions # not supported.
|
| 301 |
+
return outputs
|
| 302 |
+
else:
|
| 303 |
+
attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, -1e9).to(torch.bfloat16)
|
| 304 |
+
matmul_result = query_layer @ key_layer.transpose(-1, -2)
|
| 305 |
+
|
| 306 |
+
# change view to [batch_size, num_heads, q_length, kv_length]
|
| 307 |
+
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
|
| 308 |
+
|
| 309 |
+
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
| 310 |
+
input_dtype = attention_scores.dtype
|
| 311 |
+
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
| 312 |
+
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
| 313 |
+
attention_scores = attention_scores.to(torch.float32)
|
| 314 |
+
# attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
|
| 315 |
+
attention_probs = F.softmax(
|
| 316 |
+
(attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)) * self.inv_norm_factor
|
| 317 |
+
+ attention_mask_float,
|
| 318 |
+
dim=-1,
|
| 319 |
+
dtype=hidden_states.dtype,
|
| 320 |
+
)
|
| 321 |
+
# [batch_size, num_heads, q_length, kv_length]
|
| 322 |
+
attention_probs = self.attention_dropout(attention_probs)
|
| 323 |
+
|
| 324 |
+
if head_mask is not None:
|
| 325 |
+
attention_probs = attention_probs * head_mask
|
| 326 |
+
|
| 327 |
+
# change view [batch_size x num_heads, q_length, kv_length]
|
| 328 |
+
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
|
| 329 |
+
|
| 330 |
+
# matmul: [batch_size * num_heads, q_length, head_dim]
|
| 331 |
+
context_layer = attention_probs_reshaped @ value_layer
|
| 332 |
+
|
| 333 |
+
# change view [batch_size, num_heads, q_length, head_dim]
|
| 334 |
+
context_layer = self._merge_heads(context_layer)
|
| 335 |
+
|
| 336 |
+
output_tensor = self.dense(context_layer)
|
| 337 |
+
|
| 338 |
+
outputs = (output_tensor, present)
|
| 339 |
+
if output_attentions:
|
| 340 |
+
outputs += (attention_probs,)
|
| 341 |
+
|
| 342 |
+
return outputs
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
class MLP(nn.Module):
|
| 346 |
+
def __init__(self, config: RWConfig):
|
| 347 |
+
super().__init__()
|
| 348 |
+
hidden_size = config.hidden_size
|
| 349 |
+
|
| 350 |
+
self.dense_h_to_4h = Linear(hidden_size, 4 * hidden_size, bias=config.bias)
|
| 351 |
+
self.act = nn.GELU()
|
| 352 |
+
self.dense_4h_to_h = Linear(4 * hidden_size, hidden_size, bias=config.bias)
|
| 353 |
+
self.hidden_dropout = config.hidden_dropout
|
| 354 |
+
|
| 355 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 356 |
+
x = self.act(self.dense_h_to_4h(x))
|
| 357 |
+
x = self.dense_4h_to_h(x)
|
| 358 |
+
return x
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
class DecoderLayer(nn.Module):
|
| 362 |
+
def __init__(self, config: RWConfig):
|
| 363 |
+
super().__init__()
|
| 364 |
+
hidden_size = config.hidden_size
|
| 365 |
+
|
| 366 |
+
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 367 |
+
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 368 |
+
|
| 369 |
+
self.num_heads = config.n_head
|
| 370 |
+
self.self_attention = Attention(config)
|
| 371 |
+
|
| 372 |
+
self.mlp = MLP(config)
|
| 373 |
+
|
| 374 |
+
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
| 375 |
+
self.hidden_dropout = config.hidden_dropout
|
| 376 |
+
|
| 377 |
+
self.config = config
|
| 378 |
+
|
| 379 |
+
def forward(
|
| 380 |
+
self,
|
| 381 |
+
hidden_states: torch.Tensor,
|
| 382 |
+
alibi: torch.Tensor,
|
| 383 |
+
attention_mask: torch.Tensor,
|
| 384 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 385 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 386 |
+
use_cache: bool = False,
|
| 387 |
+
output_attentions: bool = False,
|
| 388 |
+
):
|
| 389 |
+
|
| 390 |
+
ln_attn = self.ln_attn(hidden_states)
|
| 391 |
+
ln_mlp = self.ln_mlp(hidden_states)
|
| 392 |
+
|
| 393 |
+
residual = hidden_states
|
| 394 |
+
|
| 395 |
+
# Self attention.
|
| 396 |
+
attn_outputs = self.self_attention(
|
| 397 |
+
ln_attn,
|
| 398 |
+
layer_past=layer_past,
|
| 399 |
+
attention_mask=attention_mask,
|
| 400 |
+
alibi=alibi,
|
| 401 |
+
head_mask=head_mask,
|
| 402 |
+
use_cache=use_cache,
|
| 403 |
+
output_attentions=output_attentions,
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
attention_output = attn_outputs[0]
|
| 407 |
+
|
| 408 |
+
outputs = attn_outputs[1:]
|
| 409 |
+
|
| 410 |
+
# MLP.
|
| 411 |
+
mlp_output = self.mlp(ln_mlp)
|
| 412 |
+
|
| 413 |
+
output = dropout_add(
|
| 414 |
+
mlp_output + attention_output, residual, self.config.hidden_dropout, training=self.training
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
if use_cache:
|
| 418 |
+
outputs = (output,) + outputs
|
| 419 |
+
else:
|
| 420 |
+
outputs = (output,) + outputs[1:]
|
| 421 |
+
|
| 422 |
+
return outputs # hidden_states, present, attentions
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
class RWPreTrainedModel(PreTrainedModel):
|
| 426 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
| 427 |
+
"""
|
| 428 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 429 |
+
models.
|
| 430 |
+
"""
|
| 431 |
+
|
| 432 |
+
config_class = RWConfig
|
| 433 |
+
base_model_prefix = "transformer"
|
| 434 |
+
supports_gradient_checkpointing = True
|
| 435 |
+
_no_split_modules = ["DecoderLayer"]
|
| 436 |
+
|
| 437 |
+
def __init__(self, *inputs, **kwargs):
|
| 438 |
+
super().__init__(*inputs, **kwargs)
|
| 439 |
+
|
| 440 |
+
def _init_weights(self, module: nn.Module):
|
| 441 |
+
"""Initialize the weights."""
|
| 442 |
+
if isinstance(module, nn.Linear) or isinstance(module, Linear):
|
| 443 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 444 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 445 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 446 |
+
if module.bias is not None:
|
| 447 |
+
module.bias.data.zero_()
|
| 448 |
+
elif isinstance(module, nn.Embedding):
|
| 449 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 450 |
+
if module.padding_idx is not None:
|
| 451 |
+
module.weight.data[module.padding_idx].zero_()
|
| 452 |
+
elif isinstance(module, LayerNorm):
|
| 453 |
+
module.bias.data.zero_()
|
| 454 |
+
module.weight.data.fill_(1.0)
|
| 455 |
+
|
| 456 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
|
| 457 |
+
if isinstance(module, RWModel):
|
| 458 |
+
module.gradient_checkpointing = value
|
| 459 |
+
|
| 460 |
+
@staticmethod
|
| 461 |
+
def _convert_to_standard_cache(
|
| 462 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
| 463 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
| 464 |
+
"""
|
| 465 |
+
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
| 466 |
+
num_heads, ...]))
|
| 467 |
+
"""
|
| 468 |
+
batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
| 469 |
+
num_heads = batch_size_times_num_heads // batch_size
|
| 470 |
+
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
|
| 471 |
+
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
|
| 472 |
+
return tuple(
|
| 473 |
+
(
|
| 474 |
+
layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
|
| 475 |
+
layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
|
| 476 |
+
)
|
| 477 |
+
for layer_past in past_key_value
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
@staticmethod
|
| 481 |
+
def _convert_to_rw_cache(
|
| 482 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
|
| 483 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
| 484 |
+
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
| 485 |
+
batch_size_times_num_heads = batch_size * num_heads
|
| 486 |
+
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
|
| 487 |
+
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
|
| 488 |
+
return tuple(
|
| 489 |
+
(
|
| 490 |
+
layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
|
| 491 |
+
layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
|
| 492 |
+
)
|
| 493 |
+
for layer_past in past_key_value
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
class RWModel(RWPreTrainedModel):
|
| 498 |
+
def __init__(self, config: RWConfig):
|
| 499 |
+
super().__init__(config)
|
| 500 |
+
|
| 501 |
+
self.embed_dim = config.hidden_size
|
| 502 |
+
self.num_heads = config.n_head
|
| 503 |
+
self.alibi = config.alibi
|
| 504 |
+
|
| 505 |
+
# Embedding + LN Embedding
|
| 506 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 507 |
+
|
| 508 |
+
# Transformer blocks
|
| 509 |
+
self.h = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 510 |
+
|
| 511 |
+
# Final Layer Norm
|
| 512 |
+
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
| 513 |
+
|
| 514 |
+
self.gradient_checkpointing = False
|
| 515 |
+
|
| 516 |
+
# Initialize weights and apply final processing
|
| 517 |
+
self.post_init()
|
| 518 |
+
|
| 519 |
+
def get_input_embeddings(self):
|
| 520 |
+
return self.word_embeddings
|
| 521 |
+
|
| 522 |
+
def _prepare_attn_mask(
|
| 523 |
+
self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
|
| 524 |
+
) -> torch.BoolTensor:
|
| 525 |
+
# create causal mask
|
| 526 |
+
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
|
| 527 |
+
combined_attention_mask = None
|
| 528 |
+
device = attention_mask.device
|
| 529 |
+
_, src_length = input_shape
|
| 530 |
+
|
| 531 |
+
if src_length > 1:
|
| 532 |
+
combined_attention_mask = _make_causal_mask(
|
| 533 |
+
input_shape, device=device, past_key_values_length=past_key_values_length
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
|
| 537 |
+
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
|
| 538 |
+
combined_attention_mask = (
|
| 539 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
return combined_attention_mask
|
| 543 |
+
|
| 544 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
| 545 |
+
self.word_embeddings = new_embeddings
|
| 546 |
+
|
| 547 |
+
def forward(
|
| 548 |
+
self,
|
| 549 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 550 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 551 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 552 |
+
head_mask: Optional[torch.LongTensor] = None,
|
| 553 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
| 554 |
+
use_cache: Optional[bool] = None,
|
| 555 |
+
output_attentions: Optional[bool] = None,
|
| 556 |
+
output_hidden_states: Optional[bool] = None,
|
| 557 |
+
return_dict: Optional[bool] = None,
|
| 558 |
+
**deprecated_arguments,
|
| 559 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
| 560 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 561 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 562 |
+
warnings.warn(
|
| 563 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
| 564 |
+
" passing `position_ids`.",
|
| 565 |
+
FutureWarning,
|
| 566 |
+
)
|
| 567 |
+
if len(deprecated_arguments) > 0:
|
| 568 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 569 |
+
|
| 570 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 571 |
+
output_hidden_states = (
|
| 572 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 573 |
+
)
|
| 574 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 575 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 576 |
+
|
| 577 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 578 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 579 |
+
elif input_ids is not None:
|
| 580 |
+
batch_size, seq_length = input_ids.shape
|
| 581 |
+
elif inputs_embeds is not None:
|
| 582 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 585 |
+
|
| 586 |
+
if past_key_values is None:
|
| 587 |
+
past_key_values = tuple([None] * len(self.h))
|
| 588 |
+
|
| 589 |
+
# Prepare head mask if needed
|
| 590 |
+
# 1.0 in head_mask indicate we keep the head
|
| 591 |
+
# attention_probs has shape batch_size x num_heads x N x N
|
| 592 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
| 593 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
| 594 |
+
|
| 595 |
+
if inputs_embeds is None:
|
| 596 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 597 |
+
|
| 598 |
+
hidden_states = inputs_embeds
|
| 599 |
+
|
| 600 |
+
presents = () if use_cache else None
|
| 601 |
+
all_self_attentions = () if output_attentions else None
|
| 602 |
+
all_hidden_states = () if output_hidden_states else None
|
| 603 |
+
|
| 604 |
+
# Compute alibi tensor: check build_alibi_tensor documentation
|
| 605 |
+
seq_length_with_past = seq_length
|
| 606 |
+
past_key_values_length = 0
|
| 607 |
+
if past_key_values[0] is not None:
|
| 608 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 609 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 610 |
+
if attention_mask is None:
|
| 611 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
| 612 |
+
else:
|
| 613 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
| 614 |
+
|
| 615 |
+
if self.alibi:
|
| 616 |
+
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
| 617 |
+
else:
|
| 618 |
+
alibi = None
|
| 619 |
+
|
| 620 |
+
causal_mask = self._prepare_attn_mask(
|
| 621 |
+
attention_mask,
|
| 622 |
+
input_shape=(batch_size, seq_length),
|
| 623 |
+
past_key_values_length=past_key_values_length,
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
| 627 |
+
|
| 628 |
+
if output_hidden_states:
|
| 629 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 630 |
+
|
| 631 |
+
if self.gradient_checkpointing and self.training:
|
| 632 |
+
|
| 633 |
+
if use_cache:
|
| 634 |
+
logger.warning(
|
| 635 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 636 |
+
)
|
| 637 |
+
use_cache = False
|
| 638 |
+
|
| 639 |
+
def create_custom_forward(module):
|
| 640 |
+
def custom_forward(*inputs):
|
| 641 |
+
# None for past_key_value
|
| 642 |
+
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
| 643 |
+
|
| 644 |
+
return custom_forward
|
| 645 |
+
|
| 646 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
| 647 |
+
create_custom_forward(block),
|
| 648 |
+
hidden_states,
|
| 649 |
+
alibi,
|
| 650 |
+
causal_mask,
|
| 651 |
+
head_mask[i],
|
| 652 |
+
)
|
| 653 |
+
else:
|
| 654 |
+
outputs = block(
|
| 655 |
+
hidden_states,
|
| 656 |
+
layer_past=layer_past,
|
| 657 |
+
attention_mask=causal_mask,
|
| 658 |
+
head_mask=head_mask[i],
|
| 659 |
+
use_cache=use_cache,
|
| 660 |
+
output_attentions=output_attentions,
|
| 661 |
+
alibi=alibi,
|
| 662 |
+
)
|
| 663 |
+
|
| 664 |
+
hidden_states = outputs[0]
|
| 665 |
+
if use_cache is True:
|
| 666 |
+
presents = presents + (outputs[1],)
|
| 667 |
+
|
| 668 |
+
if output_attentions:
|
| 669 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
| 670 |
+
|
| 671 |
+
# Add last hidden state
|
| 672 |
+
hidden_states = self.ln_f(hidden_states)
|
| 673 |
+
|
| 674 |
+
if output_hidden_states:
|
| 675 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 676 |
+
|
| 677 |
+
if not return_dict:
|
| 678 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
| 679 |
+
|
| 680 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 681 |
+
last_hidden_state=hidden_states,
|
| 682 |
+
past_key_values=presents,
|
| 683 |
+
hidden_states=all_hidden_states,
|
| 684 |
+
attentions=all_self_attentions,
|
| 685 |
+
)
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
class RWForCausalLM(RWPreTrainedModel):
|
| 689 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
| 690 |
+
|
| 691 |
+
def __init__(self, config: RWConfig):
|
| 692 |
+
super().__init__(config)
|
| 693 |
+
self.transformer = RWModel(config)
|
| 694 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 695 |
+
|
| 696 |
+
# Initialize weights and apply final processing
|
| 697 |
+
self.post_init()
|
| 698 |
+
|
| 699 |
+
def get_output_embeddings(self):
|
| 700 |
+
return self.lm_head
|
| 701 |
+
|
| 702 |
+
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
| 703 |
+
self.lm_head = new_embeddings
|
| 704 |
+
|
| 705 |
+
def prepare_inputs_for_generation(
|
| 706 |
+
self,
|
| 707 |
+
input_ids: torch.LongTensor,
|
| 708 |
+
past: Optional[torch.Tensor] = None,
|
| 709 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 710 |
+
**kwargs,
|
| 711 |
+
) -> dict:
|
| 712 |
+
# only last token for input_ids if past is not None
|
| 713 |
+
if past:
|
| 714 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 715 |
+
|
| 716 |
+
# the cache may be in the stardard format (e.g. in contrastive search), convert to our's format if needed
|
| 717 |
+
if past[0][0].shape[0] == input_ids.shape[0]:
|
| 718 |
+
past = self._convert_to_rw_cache(past)
|
| 719 |
+
|
| 720 |
+
return {
|
| 721 |
+
"input_ids": input_ids,
|
| 722 |
+
"past_key_values": past,
|
| 723 |
+
"use_cache": kwargs.get("use_cache"),
|
| 724 |
+
"attention_mask": attention_mask,
|
| 725 |
+
}
|
| 726 |
+
|
| 727 |
+
def forward(
|
| 728 |
+
self,
|
| 729 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 730 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 731 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 732 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 733 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 734 |
+
labels: Optional[torch.Tensor] = None,
|
| 735 |
+
use_cache: Optional[bool] = None,
|
| 736 |
+
output_attentions: Optional[bool] = None,
|
| 737 |
+
output_hidden_states: Optional[bool] = None,
|
| 738 |
+
return_dict: Optional[bool] = None,
|
| 739 |
+
**deprecated_arguments,
|
| 740 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
| 741 |
+
r"""
|
| 742 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 743 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 744 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 745 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 746 |
+
"""
|
| 747 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 748 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 749 |
+
warnings.warn(
|
| 750 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
| 751 |
+
" passing `position_ids`.",
|
| 752 |
+
FutureWarning,
|
| 753 |
+
)
|
| 754 |
+
if len(deprecated_arguments) > 0:
|
| 755 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 756 |
+
|
| 757 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 758 |
+
|
| 759 |
+
transformer_outputs = self.transformer(
|
| 760 |
+
input_ids,
|
| 761 |
+
past_key_values=past_key_values,
|
| 762 |
+
attention_mask=attention_mask,
|
| 763 |
+
head_mask=head_mask,
|
| 764 |
+
inputs_embeds=inputs_embeds,
|
| 765 |
+
use_cache=use_cache,
|
| 766 |
+
output_attentions=output_attentions,
|
| 767 |
+
output_hidden_states=output_hidden_states,
|
| 768 |
+
return_dict=return_dict,
|
| 769 |
+
)
|
| 770 |
+
hidden_states = transformer_outputs[0]
|
| 771 |
+
|
| 772 |
+
lm_logits = self.lm_head(hidden_states)
|
| 773 |
+
|
| 774 |
+
loss = None
|
| 775 |
+
if labels is not None:
|
| 776 |
+
# Shift so that tokens < n predict n
|
| 777 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 778 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 779 |
+
batch_size, seq_length, vocab_size = shift_logits.shape
|
| 780 |
+
# Flatten the tokens
|
| 781 |
+
loss_fct = CrossEntropyLoss()
|
| 782 |
+
loss = loss_fct(
|
| 783 |
+
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
| 784 |
+
)
|
| 785 |
+
|
| 786 |
+
if not return_dict:
|
| 787 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 788 |
+
return ((loss,) + output) if loss is not None else output
|
| 789 |
+
|
| 790 |
+
return CausalLMOutputWithCrossAttentions(
|
| 791 |
+
loss=loss,
|
| 792 |
+
logits=lm_logits,
|
| 793 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 794 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 795 |
+
attentions=transformer_outputs.attentions,
|
| 796 |
+
)
|
| 797 |
+
|
| 798 |
+
def _reorder_cache(
|
| 799 |
+
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
| 800 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
| 801 |
+
"""
|
| 802 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
| 803 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 804 |
+
beam_idx at every generation step.
|
| 805 |
+
|
| 806 |
+
Output shares the same memory storage as `past`.
|
| 807 |
+
"""
|
| 808 |
+
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
|
| 809 |
+
|
| 810 |
+
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
| 811 |
+
device_to_beam_idx = {
|
| 812 |
+
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
|
| 813 |
+
}
|
| 814 |
+
reordered_past = tuple(
|
| 815 |
+
(
|
| 816 |
+
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
| 817 |
+
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
| 818 |
+
)
|
| 819 |
+
for layer_past in standardized_past
|
| 820 |
+
)
|
| 821 |
+
return self._convert_to_rw_cache(reordered_past)
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
class RWForSequenceClassification(RWPreTrainedModel):
|
| 825 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
| 826 |
+
|
| 827 |
+
def __init__(self, config: RWConfig):
|
| 828 |
+
super().__init__(config)
|
| 829 |
+
self.num_labels = config.num_labels
|
| 830 |
+
self.transformer = RWModel(config)
|
| 831 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
| 832 |
+
|
| 833 |
+
# Initialize weights and apply final processing
|
| 834 |
+
self.post_init()
|
| 835 |
+
|
| 836 |
+
def forward(
|
| 837 |
+
self,
|
| 838 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 839 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 840 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 841 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 842 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 843 |
+
labels: Optional[torch.Tensor] = None,
|
| 844 |
+
use_cache: Optional[bool] = None,
|
| 845 |
+
output_attentions: Optional[bool] = None,
|
| 846 |
+
output_hidden_states: Optional[bool] = None,
|
| 847 |
+
return_dict: Optional[bool] = None,
|
| 848 |
+
**deprecated_arguments,
|
| 849 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
| 850 |
+
r"""
|
| 851 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 852 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 853 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 854 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 855 |
+
"""
|
| 856 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 857 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 858 |
+
warnings.warn(
|
| 859 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
| 860 |
+
" passing `position_ids`.",
|
| 861 |
+
FutureWarning,
|
| 862 |
+
)
|
| 863 |
+
if len(deprecated_arguments) > 0:
|
| 864 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 865 |
+
|
| 866 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 867 |
+
|
| 868 |
+
transformer_outputs = self.transformer(
|
| 869 |
+
input_ids,
|
| 870 |
+
past_key_values=past_key_values,
|
| 871 |
+
attention_mask=attention_mask,
|
| 872 |
+
head_mask=head_mask,
|
| 873 |
+
inputs_embeds=inputs_embeds,
|
| 874 |
+
use_cache=use_cache,
|
| 875 |
+
output_attentions=output_attentions,
|
| 876 |
+
output_hidden_states=output_hidden_states,
|
| 877 |
+
return_dict=return_dict,
|
| 878 |
+
)
|
| 879 |
+
|
| 880 |
+
hidden_states = transformer_outputs[0]
|
| 881 |
+
logits = self.score(hidden_states)
|
| 882 |
+
|
| 883 |
+
if input_ids is not None:
|
| 884 |
+
batch_size = input_ids.shape[0]
|
| 885 |
+
else:
|
| 886 |
+
batch_size = inputs_embeds.shape[0]
|
| 887 |
+
|
| 888 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 889 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 890 |
+
if self.config.pad_token_id is None:
|
| 891 |
+
sequence_lengths = -1
|
| 892 |
+
else:
|
| 893 |
+
if input_ids is not None:
|
| 894 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1
|
| 895 |
+
else:
|
| 896 |
+
sequence_lengths = -1
|
| 897 |
+
logger.warning(
|
| 898 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 899 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 900 |
+
)
|
| 901 |
+
|
| 902 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 903 |
+
|
| 904 |
+
loss = None
|
| 905 |
+
if labels is not None:
|
| 906 |
+
if self.config.problem_type is None:
|
| 907 |
+
if self.num_labels == 1:
|
| 908 |
+
self.config.problem_type = "regression"
|
| 909 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 910 |
+
self.config.problem_type = "single_label_classification"
|
| 911 |
+
else:
|
| 912 |
+
self.config.problem_type = "multi_label_classification"
|
| 913 |
+
|
| 914 |
+
if self.config.problem_type == "regression":
|
| 915 |
+
loss_fct = MSELoss()
|
| 916 |
+
if self.num_labels == 1:
|
| 917 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 918 |
+
else:
|
| 919 |
+
loss = loss_fct(pooled_logits, labels)
|
| 920 |
+
elif self.config.problem_type == "single_label_classification":
|
| 921 |
+
loss_fct = CrossEntropyLoss()
|
| 922 |
+
loss = loss_fct(pooled_logits, labels)
|
| 923 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 924 |
+
loss_fct = BCEWithLogitsLoss()
|
| 925 |
+
loss = loss_fct(pooled_logits, labels)
|
| 926 |
+
if not return_dict:
|
| 927 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 928 |
+
return ((loss,) + output) if loss is not None else output
|
| 929 |
+
|
| 930 |
+
return SequenceClassifierOutputWithPast(
|
| 931 |
+
loss=loss,
|
| 932 |
+
logits=pooled_logits,
|
| 933 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 934 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 935 |
+
attentions=transformer_outputs.attentions,
|
| 936 |
+
)
|
| 937 |
+
|
| 938 |
+
|
| 939 |
+
class RWForTokenClassification(RWPreTrainedModel):
|
| 940 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
| 941 |
+
|
| 942 |
+
def __init__(self, config: RWConfig):
|
| 943 |
+
super().__init__(config)
|
| 944 |
+
self.num_labels = config.num_labels
|
| 945 |
+
|
| 946 |
+
self.transformer = RWModel(config)
|
| 947 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
| 948 |
+
classifier_dropout = config.classifier_dropout
|
| 949 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
| 950 |
+
classifier_dropout = config.hidden_dropout
|
| 951 |
+
else:
|
| 952 |
+
classifier_dropout = 0.1
|
| 953 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 954 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 955 |
+
|
| 956 |
+
# Initialize weights and apply final processing
|
| 957 |
+
self.post_init()
|
| 958 |
+
|
| 959 |
+
def forward(
|
| 960 |
+
self,
|
| 961 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 962 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 963 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 964 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 965 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 966 |
+
labels: Optional[torch.Tensor] = None,
|
| 967 |
+
use_cache: Optional[bool] = None,
|
| 968 |
+
output_attentions: Optional[bool] = None,
|
| 969 |
+
output_hidden_states: Optional[bool] = None,
|
| 970 |
+
return_dict: Optional[bool] = None,
|
| 971 |
+
**deprecated_arguments,
|
| 972 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 973 |
+
r"""
|
| 974 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 975 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 976 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 977 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 978 |
+
"""
|
| 979 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 980 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 981 |
+
warnings.warn(
|
| 982 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
| 983 |
+
" passing `position_ids`.",
|
| 984 |
+
FutureWarning,
|
| 985 |
+
)
|
| 986 |
+
if len(deprecated_arguments) > 0:
|
| 987 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 988 |
+
|
| 989 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 990 |
+
|
| 991 |
+
transformer_outputs = self.transformer(
|
| 992 |
+
input_ids,
|
| 993 |
+
past_key_values=past_key_values,
|
| 994 |
+
attention_mask=attention_mask,
|
| 995 |
+
head_mask=head_mask,
|
| 996 |
+
inputs_embeds=inputs_embeds,
|
| 997 |
+
use_cache=use_cache,
|
| 998 |
+
output_attentions=output_attentions,
|
| 999 |
+
output_hidden_states=output_hidden_states,
|
| 1000 |
+
return_dict=return_dict,
|
| 1001 |
+
)
|
| 1002 |
+
|
| 1003 |
+
hidden_states = transformer_outputs[0]
|
| 1004 |
+
hidden_states = self.dropout(hidden_states)
|
| 1005 |
+
logits = self.classifier(hidden_states)
|
| 1006 |
+
|
| 1007 |
+
loss = None
|
| 1008 |
+
if labels is not None:
|
| 1009 |
+
batch_size, seq_length = labels.shape
|
| 1010 |
+
loss_fct = CrossEntropyLoss()
|
| 1011 |
+
loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length))
|
| 1012 |
+
|
| 1013 |
+
if not return_dict:
|
| 1014 |
+
output = (logits,) + transformer_outputs[2:]
|
| 1015 |
+
return ((loss,) + output) if loss is not None else output
|
| 1016 |
+
|
| 1017 |
+
return TokenClassifierOutput(
|
| 1018 |
+
loss=loss,
|
| 1019 |
+
logits=logits,
|
| 1020 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1021 |
+
attentions=transformer_outputs.attentions,
|
| 1022 |
+
)
|
| 1023 |
+
|
| 1024 |
+
|
| 1025 |
+
class RWForQuestionAnswering(RWPreTrainedModel):
|
| 1026 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
| 1027 |
+
|
| 1028 |
+
def __init__(self, config):
|
| 1029 |
+
super().__init__(config)
|
| 1030 |
+
self.transformer = RWModel(config)
|
| 1031 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
| 1032 |
+
|
| 1033 |
+
# Initialize weights and apply final processing
|
| 1034 |
+
self.post_init()
|
| 1035 |
+
|
| 1036 |
+
def forward(
|
| 1037 |
+
self,
|
| 1038 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1039 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1040 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1041 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1042 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1043 |
+
start_positions: Optional[torch.LongTensor] = None,
|
| 1044 |
+
end_positions: Optional[torch.LongTensor] = None,
|
| 1045 |
+
output_attentions: Optional[bool] = None,
|
| 1046 |
+
output_hidden_states: Optional[bool] = None,
|
| 1047 |
+
return_dict: Optional[bool] = None,
|
| 1048 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
| 1049 |
+
r"""
|
| 1050 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1051 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 1052 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1053 |
+
are not taken into account for computing the loss.
|
| 1054 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1055 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 1056 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1057 |
+
are not taken into account for computing the loss.
|
| 1058 |
+
"""
|
| 1059 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1060 |
+
|
| 1061 |
+
outputs = self.transformer(
|
| 1062 |
+
input_ids,
|
| 1063 |
+
attention_mask=attention_mask,
|
| 1064 |
+
position_ids=position_ids,
|
| 1065 |
+
head_mask=head_mask,
|
| 1066 |
+
inputs_embeds=inputs_embeds,
|
| 1067 |
+
output_attentions=output_attentions,
|
| 1068 |
+
output_hidden_states=output_hidden_states,
|
| 1069 |
+
return_dict=return_dict,
|
| 1070 |
+
)
|
| 1071 |
+
|
| 1072 |
+
sequence_output = outputs[0]
|
| 1073 |
+
|
| 1074 |
+
logits = self.qa_outputs(sequence_output)
|
| 1075 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1076 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1077 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1078 |
+
|
| 1079 |
+
total_loss = None
|
| 1080 |
+
if start_positions is not None and end_positions is not None:
|
| 1081 |
+
# If we are on multi-GPU, split add a dimension
|
| 1082 |
+
if len(start_positions.size()) > 1:
|
| 1083 |
+
start_positions = start_positions.squeeze(-1)
|
| 1084 |
+
if len(end_positions.size()) > 1:
|
| 1085 |
+
end_positions = end_positions.squeeze(-1)
|
| 1086 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1087 |
+
ignored_index = start_logits.size(1)
|
| 1088 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1089 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1090 |
+
|
| 1091 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
| 1092 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1093 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1094 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1095 |
+
|
| 1096 |
+
if not return_dict:
|
| 1097 |
+
output = (start_logits, end_logits) + outputs[2:]
|
| 1098 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1099 |
+
|
| 1100 |
+
return QuestionAnsweringModelOutput(
|
| 1101 |
+
loss=total_loss,
|
| 1102 |
+
start_logits=start_logits,
|
| 1103 |
+
end_logits=end_logits,
|
| 1104 |
+
hidden_states=outputs.hidden_states,
|
| 1105 |
+
attentions=outputs.attentions,
|
| 1106 |
+
)
|
pytorch_model-00001-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:770439505668e74fd22664afe2307c3fa6c3d46a54bf19b0b8ef1b68e738ba00
|
| 3 |
+
size 9211125767
|
pytorch_model-00002-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34837514af4f79495f44376ac0b24678b7fb55d13e076a6554326c7c1b366d1f
|
| 3 |
+
size 9798428805
|
pytorch_model-00003-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:518c4c73654e8a27fa10a5004f5291e9daad50b7f77095478e2610da8d595a6f
|
| 3 |
+
size 9227870553
|
pytorch_model-00004-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da40ea2abb4fba88c95cf5de79e635460646c73ee72be08dc070c1f7ac80e17b
|
| 3 |
+
size 9798428869
|
pytorch_model-00005-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b03438aa4ecaa7e7d4cc074b28e84da4fdf91a8f34c6bb7a2c1c3642c42da9f5
|
| 3 |
+
size 9227870617
|
pytorch_model-00006-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df7866835f8249f66161362826af6476bd5660b34df14028d1410844ea0bb202
|
| 3 |
+
size 9798428869
|
pytorch_model-00007-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37cffd3abd8a5db306118f84a95dbbe99e65531a654a94376eaa61a4a10f38c8
|
| 3 |
+
size 9227870617
|
pytorch_model-00008-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f579ed55df0c8b0aaf3adddc38c9d3f7ad867183b488168a01ce24889c8092f8
|
| 3 |
+
size 9798428869
|
pytorch_model-00009-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a63313464c68b6f0a3429c49ba891c4a97cb7a3025d54edf26ffc3594f635a7c
|
| 3 |
+
size 9227870617
|
pytorch_model-00010-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33069ed9465646bd3d25133bf6d4907df231bede4fd5d310446e1715f91f2f5a
|
| 3 |
+
size 9798428869
|
pytorch_model-00011-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74b1316102ac0994fd07ebd230ff0a252896520733707c7333fe505f71dd5465
|
| 3 |
+
size 9227870617
|
pytorch_model-00012-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:00d91dec3759c87d5c64ce8cf4694342e301631e772359741b863a8db5954004
|
| 3 |
+
size 9798428869
|
pytorch_model-00013-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd07f1c13ba2eea37fa55c0517599b5fd68ee9b2173aa557e11c665f5b6a8678
|
| 3 |
+
size 9227870617
|
pytorch_model-00014-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f95d4d7885f5f15668550e7e4956088936d86243f77123c99249d64aaa462e29
|
| 3 |
+
size 9798428869
|
pytorch_model-00015-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ff358398d8aa23a9e666eebd0567151eefa96a7b6cff41c23fbf9f311b27ac8d
|
| 3 |
+
size 9227870617
|
pytorch_model-00016-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99b1244597d1a396d2d9c516ec9e312bba37c88876e060b4e1484fbb1156682a
|
| 3 |
+
size 9798428869
|
pytorch_model-00017-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1af1f84068f582a67ebecc9e9b64be2bd63faf94b7e91c4e851c80f7865b39e4
|
| 3 |
+
size 9227870617
|
pytorch_model-00018-of-00018.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5269964738f900cc327187d5bc5ce9c76f26572b8a8cce842f2a9cf9ee973a56
|
| 3 |
+
size 5922590931
|
pytorch_model.bin.index.json
ADDED
|
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 167343947776
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "pytorch_model-00018-of-00018.bin",
|
| 7 |
+
"transformer.h.0.ln_attn.bias": "pytorch_model-00001-of-00018.bin",
|
| 8 |
+
"transformer.h.0.ln_attn.weight": "pytorch_model-00001-of-00018.bin",
|
| 9 |
+
"transformer.h.0.ln_mlp.bias": "pytorch_model-00001-of-00018.bin",
|
| 10 |
+
"transformer.h.0.ln_mlp.weight": "pytorch_model-00001-of-00018.bin",
|
| 11 |
+
"transformer.h.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00018.bin",
|
| 12 |
+
"transformer.h.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00018.bin",
|
| 13 |
+
"transformer.h.0.self_attention.dense.weight": "pytorch_model-00001-of-00018.bin",
|
| 14 |
+
"transformer.h.0.self_attention.query_key_value.weight": "pytorch_model-00001-of-00018.bin",
|
| 15 |
+
"transformer.h.1.ln_attn.bias": "pytorch_model-00001-of-00018.bin",
|
| 16 |
+
"transformer.h.1.ln_attn.weight": "pytorch_model-00001-of-00018.bin",
|
| 17 |
+
"transformer.h.1.ln_mlp.bias": "pytorch_model-00001-of-00018.bin",
|
| 18 |
+
"transformer.h.1.ln_mlp.weight": "pytorch_model-00001-of-00018.bin",
|
| 19 |
+
"transformer.h.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00018.bin",
|
| 20 |
+
"transformer.h.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00018.bin",
|
| 21 |
+
"transformer.h.1.self_attention.dense.weight": "pytorch_model-00001-of-00018.bin",
|
| 22 |
+
"transformer.h.1.self_attention.query_key_value.weight": "pytorch_model-00001-of-00018.bin",
|
| 23 |
+
"transformer.h.10.ln_attn.bias": "pytorch_model-00004-of-00018.bin",
|
| 24 |
+
"transformer.h.10.ln_attn.weight": "pytorch_model-00004-of-00018.bin",
|
| 25 |
+
"transformer.h.10.ln_mlp.bias": "pytorch_model-00004-of-00018.bin",
|
| 26 |
+
"transformer.h.10.ln_mlp.weight": "pytorch_model-00004-of-00018.bin",
|
| 27 |
+
"transformer.h.10.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00018.bin",
|
| 28 |
+
"transformer.h.10.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00018.bin",
|
| 29 |
+
"transformer.h.10.self_attention.dense.weight": "pytorch_model-00004-of-00018.bin",
|
| 30 |
+
"transformer.h.10.self_attention.query_key_value.weight": "pytorch_model-00004-of-00018.bin",
|
| 31 |
+
"transformer.h.11.ln_attn.bias": "pytorch_model-00004-of-00018.bin",
|
| 32 |
+
"transformer.h.11.ln_attn.weight": "pytorch_model-00004-of-00018.bin",
|
| 33 |
+
"transformer.h.11.ln_mlp.bias": "pytorch_model-00004-of-00018.bin",
|
| 34 |
+
"transformer.h.11.ln_mlp.weight": "pytorch_model-00004-of-00018.bin",
|
| 35 |
+
"transformer.h.11.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00018.bin",
|
| 36 |
+
"transformer.h.11.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00018.bin",
|
| 37 |
+
"transformer.h.11.self_attention.dense.weight": "pytorch_model-00004-of-00018.bin",
|
| 38 |
+
"transformer.h.11.self_attention.query_key_value.weight": "pytorch_model-00004-of-00018.bin",
|
| 39 |
+
"transformer.h.12.ln_attn.bias": "pytorch_model-00004-of-00018.bin",
|
| 40 |
+
"transformer.h.12.ln_attn.weight": "pytorch_model-00004-of-00018.bin",
|
| 41 |
+
"transformer.h.12.ln_mlp.bias": "pytorch_model-00004-of-00018.bin",
|
| 42 |
+
"transformer.h.12.ln_mlp.weight": "pytorch_model-00004-of-00018.bin",
|
| 43 |
+
"transformer.h.12.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00018.bin",
|
| 44 |
+
"transformer.h.12.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00018.bin",
|
| 45 |
+
"transformer.h.12.self_attention.dense.weight": "pytorch_model-00004-of-00018.bin",
|
| 46 |
+
"transformer.h.12.self_attention.query_key_value.weight": "pytorch_model-00004-of-00018.bin",
|
| 47 |
+
"transformer.h.13.ln_attn.bias": "pytorch_model-00004-of-00018.bin",
|
| 48 |
+
"transformer.h.13.ln_attn.weight": "pytorch_model-00004-of-00018.bin",
|
| 49 |
+
"transformer.h.13.ln_mlp.bias": "pytorch_model-00004-of-00018.bin",
|
| 50 |
+
"transformer.h.13.ln_mlp.weight": "pytorch_model-00004-of-00018.bin",
|
| 51 |
+
"transformer.h.13.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00018.bin",
|
| 52 |
+
"transformer.h.13.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00018.bin",
|
| 53 |
+
"transformer.h.13.self_attention.dense.weight": "pytorch_model-00004-of-00018.bin",
|
| 54 |
+
"transformer.h.13.self_attention.query_key_value.weight": "pytorch_model-00004-of-00018.bin",
|
| 55 |
+
"transformer.h.14.ln_attn.bias": "pytorch_model-00005-of-00018.bin",
|
| 56 |
+
"transformer.h.14.ln_attn.weight": "pytorch_model-00005-of-00018.bin",
|
| 57 |
+
"transformer.h.14.ln_mlp.bias": "pytorch_model-00005-of-00018.bin",
|
| 58 |
+
"transformer.h.14.ln_mlp.weight": "pytorch_model-00005-of-00018.bin",
|
| 59 |
+
"transformer.h.14.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00018.bin",
|
| 60 |
+
"transformer.h.14.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00018.bin",
|
| 61 |
+
"transformer.h.14.self_attention.dense.weight": "pytorch_model-00005-of-00018.bin",
|
| 62 |
+
"transformer.h.14.self_attention.query_key_value.weight": "pytorch_model-00005-of-00018.bin",
|
| 63 |
+
"transformer.h.15.ln_attn.bias": "pytorch_model-00005-of-00018.bin",
|
| 64 |
+
"transformer.h.15.ln_attn.weight": "pytorch_model-00005-of-00018.bin",
|
| 65 |
+
"transformer.h.15.ln_mlp.bias": "pytorch_model-00005-of-00018.bin",
|
| 66 |
+
"transformer.h.15.ln_mlp.weight": "pytorch_model-00005-of-00018.bin",
|
| 67 |
+
"transformer.h.15.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00018.bin",
|
| 68 |
+
"transformer.h.15.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00018.bin",
|
| 69 |
+
"transformer.h.15.self_attention.dense.weight": "pytorch_model-00005-of-00018.bin",
|
| 70 |
+
"transformer.h.15.self_attention.query_key_value.weight": "pytorch_model-00005-of-00018.bin",
|
| 71 |
+
"transformer.h.16.ln_attn.bias": "pytorch_model-00005-of-00018.bin",
|
| 72 |
+
"transformer.h.16.ln_attn.weight": "pytorch_model-00005-of-00018.bin",
|
| 73 |
+
"transformer.h.16.ln_mlp.bias": "pytorch_model-00005-of-00018.bin",
|
| 74 |
+
"transformer.h.16.ln_mlp.weight": "pytorch_model-00005-of-00018.bin",
|
| 75 |
+
"transformer.h.16.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00018.bin",
|
| 76 |
+
"transformer.h.16.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00018.bin",
|
| 77 |
+
"transformer.h.16.self_attention.dense.weight": "pytorch_model-00005-of-00018.bin",
|
| 78 |
+
"transformer.h.16.self_attention.query_key_value.weight": "pytorch_model-00005-of-00018.bin",
|
| 79 |
+
"transformer.h.17.ln_attn.bias": "pytorch_model-00006-of-00018.bin",
|
| 80 |
+
"transformer.h.17.ln_attn.weight": "pytorch_model-00006-of-00018.bin",
|
| 81 |
+
"transformer.h.17.ln_mlp.bias": "pytorch_model-00006-of-00018.bin",
|
| 82 |
+
"transformer.h.17.ln_mlp.weight": "pytorch_model-00006-of-00018.bin",
|
| 83 |
+
"transformer.h.17.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00018.bin",
|
| 84 |
+
"transformer.h.17.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00018.bin",
|
| 85 |
+
"transformer.h.17.self_attention.dense.weight": "pytorch_model-00006-of-00018.bin",
|
| 86 |
+
"transformer.h.17.self_attention.query_key_value.weight": "pytorch_model-00006-of-00018.bin",
|
| 87 |
+
"transformer.h.18.ln_attn.bias": "pytorch_model-00006-of-00018.bin",
|
| 88 |
+
"transformer.h.18.ln_attn.weight": "pytorch_model-00006-of-00018.bin",
|
| 89 |
+
"transformer.h.18.ln_mlp.bias": "pytorch_model-00006-of-00018.bin",
|
| 90 |
+
"transformer.h.18.ln_mlp.weight": "pytorch_model-00006-of-00018.bin",
|
| 91 |
+
"transformer.h.18.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00018.bin",
|
| 92 |
+
"transformer.h.18.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00018.bin",
|
| 93 |
+
"transformer.h.18.self_attention.dense.weight": "pytorch_model-00006-of-00018.bin",
|
| 94 |
+
"transformer.h.18.self_attention.query_key_value.weight": "pytorch_model-00006-of-00018.bin",
|
| 95 |
+
"transformer.h.19.ln_attn.bias": "pytorch_model-00006-of-00018.bin",
|
| 96 |
+
"transformer.h.19.ln_attn.weight": "pytorch_model-00006-of-00018.bin",
|
| 97 |
+
"transformer.h.19.ln_mlp.bias": "pytorch_model-00006-of-00018.bin",
|
| 98 |
+
"transformer.h.19.ln_mlp.weight": "pytorch_model-00006-of-00018.bin",
|
| 99 |
+
"transformer.h.19.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00018.bin",
|
| 100 |
+
"transformer.h.19.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00018.bin",
|
| 101 |
+
"transformer.h.19.self_attention.dense.weight": "pytorch_model-00006-of-00018.bin",
|
| 102 |
+
"transformer.h.19.self_attention.query_key_value.weight": "pytorch_model-00006-of-00018.bin",
|
| 103 |
+
"transformer.h.2.ln_attn.bias": "pytorch_model-00001-of-00018.bin",
|
| 104 |
+
"transformer.h.2.ln_attn.weight": "pytorch_model-00001-of-00018.bin",
|
| 105 |
+
"transformer.h.2.ln_mlp.bias": "pytorch_model-00001-of-00018.bin",
|
| 106 |
+
"transformer.h.2.ln_mlp.weight": "pytorch_model-00001-of-00018.bin",
|
| 107 |
+
"transformer.h.2.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00018.bin",
|
| 108 |
+
"transformer.h.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00018.bin",
|
| 109 |
+
"transformer.h.2.self_attention.dense.weight": "pytorch_model-00001-of-00018.bin",
|
| 110 |
+
"transformer.h.2.self_attention.query_key_value.weight": "pytorch_model-00001-of-00018.bin",
|
| 111 |
+
"transformer.h.20.ln_attn.bias": "pytorch_model-00006-of-00018.bin",
|
| 112 |
+
"transformer.h.20.ln_attn.weight": "pytorch_model-00006-of-00018.bin",
|
| 113 |
+
"transformer.h.20.ln_mlp.bias": "pytorch_model-00006-of-00018.bin",
|
| 114 |
+
"transformer.h.20.ln_mlp.weight": "pytorch_model-00006-of-00018.bin",
|
| 115 |
+
"transformer.h.20.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00018.bin",
|
| 116 |
+
"transformer.h.20.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00018.bin",
|
| 117 |
+
"transformer.h.20.self_attention.dense.weight": "pytorch_model-00006-of-00018.bin",
|
| 118 |
+
"transformer.h.20.self_attention.query_key_value.weight": "pytorch_model-00006-of-00018.bin",
|
| 119 |
+
"transformer.h.21.ln_attn.bias": "pytorch_model-00007-of-00018.bin",
|
| 120 |
+
"transformer.h.21.ln_attn.weight": "pytorch_model-00007-of-00018.bin",
|
| 121 |
+
"transformer.h.21.ln_mlp.bias": "pytorch_model-00007-of-00018.bin",
|
| 122 |
+
"transformer.h.21.ln_mlp.weight": "pytorch_model-00007-of-00018.bin",
|
| 123 |
+
"transformer.h.21.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00018.bin",
|
| 124 |
+
"transformer.h.21.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00018.bin",
|
| 125 |
+
"transformer.h.21.self_attention.dense.weight": "pytorch_model-00007-of-00018.bin",
|
| 126 |
+
"transformer.h.21.self_attention.query_key_value.weight": "pytorch_model-00007-of-00018.bin",
|
| 127 |
+
"transformer.h.22.ln_attn.bias": "pytorch_model-00007-of-00018.bin",
|
| 128 |
+
"transformer.h.22.ln_attn.weight": "pytorch_model-00007-of-00018.bin",
|
| 129 |
+
"transformer.h.22.ln_mlp.bias": "pytorch_model-00007-of-00018.bin",
|
| 130 |
+
"transformer.h.22.ln_mlp.weight": "pytorch_model-00007-of-00018.bin",
|
| 131 |
+
"transformer.h.22.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00018.bin",
|
| 132 |
+
"transformer.h.22.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00018.bin",
|
| 133 |
+
"transformer.h.22.self_attention.dense.weight": "pytorch_model-00007-of-00018.bin",
|
| 134 |
+
"transformer.h.22.self_attention.query_key_value.weight": "pytorch_model-00007-of-00018.bin",
|
| 135 |
+
"transformer.h.23.ln_attn.bias": "pytorch_model-00007-of-00018.bin",
|
| 136 |
+
"transformer.h.23.ln_attn.weight": "pytorch_model-00007-of-00018.bin",
|
| 137 |
+
"transformer.h.23.ln_mlp.bias": "pytorch_model-00007-of-00018.bin",
|
| 138 |
+
"transformer.h.23.ln_mlp.weight": "pytorch_model-00007-of-00018.bin",
|
| 139 |
+
"transformer.h.23.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00018.bin",
|
| 140 |
+
"transformer.h.23.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00018.bin",
|
| 141 |
+
"transformer.h.23.self_attention.dense.weight": "pytorch_model-00007-of-00018.bin",
|
| 142 |
+
"transformer.h.23.self_attention.query_key_value.weight": "pytorch_model-00007-of-00018.bin",
|
| 143 |
+
"transformer.h.24.ln_attn.bias": "pytorch_model-00008-of-00018.bin",
|
| 144 |
+
"transformer.h.24.ln_attn.weight": "pytorch_model-00008-of-00018.bin",
|
| 145 |
+
"transformer.h.24.ln_mlp.bias": "pytorch_model-00008-of-00018.bin",
|
| 146 |
+
"transformer.h.24.ln_mlp.weight": "pytorch_model-00008-of-00018.bin",
|
| 147 |
+
"transformer.h.24.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00018.bin",
|
| 148 |
+
"transformer.h.24.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00018.bin",
|
| 149 |
+
"transformer.h.24.self_attention.dense.weight": "pytorch_model-00008-of-00018.bin",
|
| 150 |
+
"transformer.h.24.self_attention.query_key_value.weight": "pytorch_model-00008-of-00018.bin",
|
| 151 |
+
"transformer.h.25.ln_attn.bias": "pytorch_model-00008-of-00018.bin",
|
| 152 |
+
"transformer.h.25.ln_attn.weight": "pytorch_model-00008-of-00018.bin",
|
| 153 |
+
"transformer.h.25.ln_mlp.bias": "pytorch_model-00008-of-00018.bin",
|
| 154 |
+
"transformer.h.25.ln_mlp.weight": "pytorch_model-00008-of-00018.bin",
|
| 155 |
+
"transformer.h.25.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00018.bin",
|
| 156 |
+
"transformer.h.25.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00018.bin",
|
| 157 |
+
"transformer.h.25.self_attention.dense.weight": "pytorch_model-00008-of-00018.bin",
|
| 158 |
+
"transformer.h.25.self_attention.query_key_value.weight": "pytorch_model-00008-of-00018.bin",
|
| 159 |
+
"transformer.h.26.ln_attn.bias": "pytorch_model-00008-of-00018.bin",
|
| 160 |
+
"transformer.h.26.ln_attn.weight": "pytorch_model-00008-of-00018.bin",
|
| 161 |
+
"transformer.h.26.ln_mlp.bias": "pytorch_model-00008-of-00018.bin",
|
| 162 |
+
"transformer.h.26.ln_mlp.weight": "pytorch_model-00008-of-00018.bin",
|
| 163 |
+
"transformer.h.26.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00018.bin",
|
| 164 |
+
"transformer.h.26.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00018.bin",
|
| 165 |
+
"transformer.h.26.self_attention.dense.weight": "pytorch_model-00008-of-00018.bin",
|
| 166 |
+
"transformer.h.26.self_attention.query_key_value.weight": "pytorch_model-00008-of-00018.bin",
|
| 167 |
+
"transformer.h.27.ln_attn.bias": "pytorch_model-00008-of-00018.bin",
|
| 168 |
+
"transformer.h.27.ln_attn.weight": "pytorch_model-00008-of-00018.bin",
|
| 169 |
+
"transformer.h.27.ln_mlp.bias": "pytorch_model-00008-of-00018.bin",
|
| 170 |
+
"transformer.h.27.ln_mlp.weight": "pytorch_model-00008-of-00018.bin",
|
| 171 |
+
"transformer.h.27.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00018.bin",
|
| 172 |
+
"transformer.h.27.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00018.bin",
|
| 173 |
+
"transformer.h.27.self_attention.dense.weight": "pytorch_model-00008-of-00018.bin",
|
| 174 |
+
"transformer.h.27.self_attention.query_key_value.weight": "pytorch_model-00008-of-00018.bin",
|
| 175 |
+
"transformer.h.28.ln_attn.bias": "pytorch_model-00009-of-00018.bin",
|
| 176 |
+
"transformer.h.28.ln_attn.weight": "pytorch_model-00009-of-00018.bin",
|
| 177 |
+
"transformer.h.28.ln_mlp.bias": "pytorch_model-00009-of-00018.bin",
|
| 178 |
+
"transformer.h.28.ln_mlp.weight": "pytorch_model-00009-of-00018.bin",
|
| 179 |
+
"transformer.h.28.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00018.bin",
|
| 180 |
+
"transformer.h.28.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00018.bin",
|
| 181 |
+
"transformer.h.28.self_attention.dense.weight": "pytorch_model-00009-of-00018.bin",
|
| 182 |
+
"transformer.h.28.self_attention.query_key_value.weight": "pytorch_model-00009-of-00018.bin",
|
| 183 |
+
"transformer.h.29.ln_attn.bias": "pytorch_model-00009-of-00018.bin",
|
| 184 |
+
"transformer.h.29.ln_attn.weight": "pytorch_model-00009-of-00018.bin",
|
| 185 |
+
"transformer.h.29.ln_mlp.bias": "pytorch_model-00009-of-00018.bin",
|
| 186 |
+
"transformer.h.29.ln_mlp.weight": "pytorch_model-00009-of-00018.bin",
|
| 187 |
+
"transformer.h.29.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00018.bin",
|
| 188 |
+
"transformer.h.29.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00018.bin",
|
| 189 |
+
"transformer.h.29.self_attention.dense.weight": "pytorch_model-00009-of-00018.bin",
|
| 190 |
+
"transformer.h.29.self_attention.query_key_value.weight": "pytorch_model-00009-of-00018.bin",
|
| 191 |
+
"transformer.h.3.ln_attn.bias": "pytorch_model-00002-of-00018.bin",
|
| 192 |
+
"transformer.h.3.ln_attn.weight": "pytorch_model-00002-of-00018.bin",
|
| 193 |
+
"transformer.h.3.ln_mlp.bias": "pytorch_model-00002-of-00018.bin",
|
| 194 |
+
"transformer.h.3.ln_mlp.weight": "pytorch_model-00002-of-00018.bin",
|
| 195 |
+
"transformer.h.3.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00018.bin",
|
| 196 |
+
"transformer.h.3.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00018.bin",
|
| 197 |
+
"transformer.h.3.self_attention.dense.weight": "pytorch_model-00002-of-00018.bin",
|
| 198 |
+
"transformer.h.3.self_attention.query_key_value.weight": "pytorch_model-00002-of-00018.bin",
|
| 199 |
+
"transformer.h.30.ln_attn.bias": "pytorch_model-00009-of-00018.bin",
|
| 200 |
+
"transformer.h.30.ln_attn.weight": "pytorch_model-00009-of-00018.bin",
|
| 201 |
+
"transformer.h.30.ln_mlp.bias": "pytorch_model-00009-of-00018.bin",
|
| 202 |
+
"transformer.h.30.ln_mlp.weight": "pytorch_model-00009-of-00018.bin",
|
| 203 |
+
"transformer.h.30.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00018.bin",
|
| 204 |
+
"transformer.h.30.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00018.bin",
|
| 205 |
+
"transformer.h.30.self_attention.dense.weight": "pytorch_model-00009-of-00018.bin",
|
| 206 |
+
"transformer.h.30.self_attention.query_key_value.weight": "pytorch_model-00009-of-00018.bin",
|
| 207 |
+
"transformer.h.31.ln_attn.bias": "pytorch_model-00010-of-00018.bin",
|
| 208 |
+
"transformer.h.31.ln_attn.weight": "pytorch_model-00010-of-00018.bin",
|
| 209 |
+
"transformer.h.31.ln_mlp.bias": "pytorch_model-00010-of-00018.bin",
|
| 210 |
+
"transformer.h.31.ln_mlp.weight": "pytorch_model-00010-of-00018.bin",
|
| 211 |
+
"transformer.h.31.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00018.bin",
|
| 212 |
+
"transformer.h.31.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00018.bin",
|
| 213 |
+
"transformer.h.31.self_attention.dense.weight": "pytorch_model-00010-of-00018.bin",
|
| 214 |
+
"transformer.h.31.self_attention.query_key_value.weight": "pytorch_model-00010-of-00018.bin",
|
| 215 |
+
"transformer.h.32.ln_attn.bias": "pytorch_model-00010-of-00018.bin",
|
| 216 |
+
"transformer.h.32.ln_attn.weight": "pytorch_model-00010-of-00018.bin",
|
| 217 |
+
"transformer.h.32.ln_mlp.bias": "pytorch_model-00010-of-00018.bin",
|
| 218 |
+
"transformer.h.32.ln_mlp.weight": "pytorch_model-00010-of-00018.bin",
|
| 219 |
+
"transformer.h.32.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00018.bin",
|
| 220 |
+
"transformer.h.32.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00018.bin",
|
| 221 |
+
"transformer.h.32.self_attention.dense.weight": "pytorch_model-00010-of-00018.bin",
|
| 222 |
+
"transformer.h.32.self_attention.query_key_value.weight": "pytorch_model-00010-of-00018.bin",
|
| 223 |
+
"transformer.h.33.ln_attn.bias": "pytorch_model-00010-of-00018.bin",
|
| 224 |
+
"transformer.h.33.ln_attn.weight": "pytorch_model-00010-of-00018.bin",
|
| 225 |
+
"transformer.h.33.ln_mlp.bias": "pytorch_model-00010-of-00018.bin",
|
| 226 |
+
"transformer.h.33.ln_mlp.weight": "pytorch_model-00010-of-00018.bin",
|
| 227 |
+
"transformer.h.33.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00018.bin",
|
| 228 |
+
"transformer.h.33.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00018.bin",
|
| 229 |
+
"transformer.h.33.self_attention.dense.weight": "pytorch_model-00010-of-00018.bin",
|
| 230 |
+
"transformer.h.33.self_attention.query_key_value.weight": "pytorch_model-00010-of-00018.bin",
|
| 231 |
+
"transformer.h.34.ln_attn.bias": "pytorch_model-00010-of-00018.bin",
|
| 232 |
+
"transformer.h.34.ln_attn.weight": "pytorch_model-00010-of-00018.bin",
|
| 233 |
+
"transformer.h.34.ln_mlp.bias": "pytorch_model-00010-of-00018.bin",
|
| 234 |
+
"transformer.h.34.ln_mlp.weight": "pytorch_model-00010-of-00018.bin",
|
| 235 |
+
"transformer.h.34.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00018.bin",
|
| 236 |
+
"transformer.h.34.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00018.bin",
|
| 237 |
+
"transformer.h.34.self_attention.dense.weight": "pytorch_model-00010-of-00018.bin",
|
| 238 |
+
"transformer.h.34.self_attention.query_key_value.weight": "pytorch_model-00010-of-00018.bin",
|
| 239 |
+
"transformer.h.35.ln_attn.bias": "pytorch_model-00011-of-00018.bin",
|
| 240 |
+
"transformer.h.35.ln_attn.weight": "pytorch_model-00011-of-00018.bin",
|
| 241 |
+
"transformer.h.35.ln_mlp.bias": "pytorch_model-00011-of-00018.bin",
|
| 242 |
+
"transformer.h.35.ln_mlp.weight": "pytorch_model-00011-of-00018.bin",
|
| 243 |
+
"transformer.h.35.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00018.bin",
|
| 244 |
+
"transformer.h.35.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00018.bin",
|
| 245 |
+
"transformer.h.35.self_attention.dense.weight": "pytorch_model-00011-of-00018.bin",
|
| 246 |
+
"transformer.h.35.self_attention.query_key_value.weight": "pytorch_model-00011-of-00018.bin",
|
| 247 |
+
"transformer.h.36.ln_attn.bias": "pytorch_model-00011-of-00018.bin",
|
| 248 |
+
"transformer.h.36.ln_attn.weight": "pytorch_model-00011-of-00018.bin",
|
| 249 |
+
"transformer.h.36.ln_mlp.bias": "pytorch_model-00011-of-00018.bin",
|
| 250 |
+
"transformer.h.36.ln_mlp.weight": "pytorch_model-00011-of-00018.bin",
|
| 251 |
+
"transformer.h.36.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00018.bin",
|
| 252 |
+
"transformer.h.36.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00018.bin",
|
| 253 |
+
"transformer.h.36.self_attention.dense.weight": "pytorch_model-00011-of-00018.bin",
|
| 254 |
+
"transformer.h.36.self_attention.query_key_value.weight": "pytorch_model-00011-of-00018.bin",
|
| 255 |
+
"transformer.h.37.ln_attn.bias": "pytorch_model-00011-of-00018.bin",
|
| 256 |
+
"transformer.h.37.ln_attn.weight": "pytorch_model-00011-of-00018.bin",
|
| 257 |
+
"transformer.h.37.ln_mlp.bias": "pytorch_model-00011-of-00018.bin",
|
| 258 |
+
"transformer.h.37.ln_mlp.weight": "pytorch_model-00011-of-00018.bin",
|
| 259 |
+
"transformer.h.37.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00018.bin",
|
| 260 |
+
"transformer.h.37.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00018.bin",
|
| 261 |
+
"transformer.h.37.self_attention.dense.weight": "pytorch_model-00011-of-00018.bin",
|
| 262 |
+
"transformer.h.37.self_attention.query_key_value.weight": "pytorch_model-00011-of-00018.bin",
|
| 263 |
+
"transformer.h.38.ln_attn.bias": "pytorch_model-00012-of-00018.bin",
|
| 264 |
+
"transformer.h.38.ln_attn.weight": "pytorch_model-00012-of-00018.bin",
|
| 265 |
+
"transformer.h.38.ln_mlp.bias": "pytorch_model-00012-of-00018.bin",
|
| 266 |
+
"transformer.h.38.ln_mlp.weight": "pytorch_model-00012-of-00018.bin",
|
| 267 |
+
"transformer.h.38.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00018.bin",
|
| 268 |
+
"transformer.h.38.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00018.bin",
|
| 269 |
+
"transformer.h.38.self_attention.dense.weight": "pytorch_model-00012-of-00018.bin",
|
| 270 |
+
"transformer.h.38.self_attention.query_key_value.weight": "pytorch_model-00012-of-00018.bin",
|
| 271 |
+
"transformer.h.39.ln_attn.bias": "pytorch_model-00012-of-00018.bin",
|
| 272 |
+
"transformer.h.39.ln_attn.weight": "pytorch_model-00012-of-00018.bin",
|
| 273 |
+
"transformer.h.39.ln_mlp.bias": "pytorch_model-00012-of-00018.bin",
|
| 274 |
+
"transformer.h.39.ln_mlp.weight": "pytorch_model-00012-of-00018.bin",
|
| 275 |
+
"transformer.h.39.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00018.bin",
|
| 276 |
+
"transformer.h.39.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00018.bin",
|
| 277 |
+
"transformer.h.39.self_attention.dense.weight": "pytorch_model-00012-of-00018.bin",
|
| 278 |
+
"transformer.h.39.self_attention.query_key_value.weight": "pytorch_model-00012-of-00018.bin",
|
| 279 |
+
"transformer.h.4.ln_attn.bias": "pytorch_model-00002-of-00018.bin",
|
| 280 |
+
"transformer.h.4.ln_attn.weight": "pytorch_model-00002-of-00018.bin",
|
| 281 |
+
"transformer.h.4.ln_mlp.bias": "pytorch_model-00002-of-00018.bin",
|
| 282 |
+
"transformer.h.4.ln_mlp.weight": "pytorch_model-00002-of-00018.bin",
|
| 283 |
+
"transformer.h.4.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00018.bin",
|
| 284 |
+
"transformer.h.4.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00018.bin",
|
| 285 |
+
"transformer.h.4.self_attention.dense.weight": "pytorch_model-00002-of-00018.bin",
|
| 286 |
+
"transformer.h.4.self_attention.query_key_value.weight": "pytorch_model-00002-of-00018.bin",
|
| 287 |
+
"transformer.h.40.ln_attn.bias": "pytorch_model-00012-of-00018.bin",
|
| 288 |
+
"transformer.h.40.ln_attn.weight": "pytorch_model-00012-of-00018.bin",
|
| 289 |
+
"transformer.h.40.ln_mlp.bias": "pytorch_model-00012-of-00018.bin",
|
| 290 |
+
"transformer.h.40.ln_mlp.weight": "pytorch_model-00012-of-00018.bin",
|
| 291 |
+
"transformer.h.40.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00018.bin",
|
| 292 |
+
"transformer.h.40.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00018.bin",
|
| 293 |
+
"transformer.h.40.self_attention.dense.weight": "pytorch_model-00012-of-00018.bin",
|
| 294 |
+
"transformer.h.40.self_attention.query_key_value.weight": "pytorch_model-00012-of-00018.bin",
|
| 295 |
+
"transformer.h.41.ln_attn.bias": "pytorch_model-00012-of-00018.bin",
|
| 296 |
+
"transformer.h.41.ln_attn.weight": "pytorch_model-00012-of-00018.bin",
|
| 297 |
+
"transformer.h.41.ln_mlp.bias": "pytorch_model-00012-of-00018.bin",
|
| 298 |
+
"transformer.h.41.ln_mlp.weight": "pytorch_model-00012-of-00018.bin",
|
| 299 |
+
"transformer.h.41.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00018.bin",
|
| 300 |
+
"transformer.h.41.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00018.bin",
|
| 301 |
+
"transformer.h.41.self_attention.dense.weight": "pytorch_model-00012-of-00018.bin",
|
| 302 |
+
"transformer.h.41.self_attention.query_key_value.weight": "pytorch_model-00012-of-00018.bin",
|
| 303 |
+
"transformer.h.42.ln_attn.bias": "pytorch_model-00013-of-00018.bin",
|
| 304 |
+
"transformer.h.42.ln_attn.weight": "pytorch_model-00013-of-00018.bin",
|
| 305 |
+
"transformer.h.42.ln_mlp.bias": "pytorch_model-00013-of-00018.bin",
|
| 306 |
+
"transformer.h.42.ln_mlp.weight": "pytorch_model-00013-of-00018.bin",
|
| 307 |
+
"transformer.h.42.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00018.bin",
|
| 308 |
+
"transformer.h.42.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00018.bin",
|
| 309 |
+
"transformer.h.42.self_attention.dense.weight": "pytorch_model-00013-of-00018.bin",
|
| 310 |
+
"transformer.h.42.self_attention.query_key_value.weight": "pytorch_model-00013-of-00018.bin",
|
| 311 |
+
"transformer.h.43.ln_attn.bias": "pytorch_model-00013-of-00018.bin",
|
| 312 |
+
"transformer.h.43.ln_attn.weight": "pytorch_model-00013-of-00018.bin",
|
| 313 |
+
"transformer.h.43.ln_mlp.bias": "pytorch_model-00013-of-00018.bin",
|
| 314 |
+
"transformer.h.43.ln_mlp.weight": "pytorch_model-00013-of-00018.bin",
|
| 315 |
+
"transformer.h.43.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00018.bin",
|
| 316 |
+
"transformer.h.43.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00018.bin",
|
| 317 |
+
"transformer.h.43.self_attention.dense.weight": "pytorch_model-00013-of-00018.bin",
|
| 318 |
+
"transformer.h.43.self_attention.query_key_value.weight": "pytorch_model-00013-of-00018.bin",
|
| 319 |
+
"transformer.h.44.ln_attn.bias": "pytorch_model-00013-of-00018.bin",
|
| 320 |
+
"transformer.h.44.ln_attn.weight": "pytorch_model-00013-of-00018.bin",
|
| 321 |
+
"transformer.h.44.ln_mlp.bias": "pytorch_model-00013-of-00018.bin",
|
| 322 |
+
"transformer.h.44.ln_mlp.weight": "pytorch_model-00013-of-00018.bin",
|
| 323 |
+
"transformer.h.44.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00018.bin",
|
| 324 |
+
"transformer.h.44.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00018.bin",
|
| 325 |
+
"transformer.h.44.self_attention.dense.weight": "pytorch_model-00013-of-00018.bin",
|
| 326 |
+
"transformer.h.44.self_attention.query_key_value.weight": "pytorch_model-00013-of-00018.bin",
|
| 327 |
+
"transformer.h.45.ln_attn.bias": "pytorch_model-00014-of-00018.bin",
|
| 328 |
+
"transformer.h.45.ln_attn.weight": "pytorch_model-00014-of-00018.bin",
|
| 329 |
+
"transformer.h.45.ln_mlp.bias": "pytorch_model-00014-of-00018.bin",
|
| 330 |
+
"transformer.h.45.ln_mlp.weight": "pytorch_model-00014-of-00018.bin",
|
| 331 |
+
"transformer.h.45.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00018.bin",
|
| 332 |
+
"transformer.h.45.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00018.bin",
|
| 333 |
+
"transformer.h.45.self_attention.dense.weight": "pytorch_model-00014-of-00018.bin",
|
| 334 |
+
"transformer.h.45.self_attention.query_key_value.weight": "pytorch_model-00014-of-00018.bin",
|
| 335 |
+
"transformer.h.46.ln_attn.bias": "pytorch_model-00014-of-00018.bin",
|
| 336 |
+
"transformer.h.46.ln_attn.weight": "pytorch_model-00014-of-00018.bin",
|
| 337 |
+
"transformer.h.46.ln_mlp.bias": "pytorch_model-00014-of-00018.bin",
|
| 338 |
+
"transformer.h.46.ln_mlp.weight": "pytorch_model-00014-of-00018.bin",
|
| 339 |
+
"transformer.h.46.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00018.bin",
|
| 340 |
+
"transformer.h.46.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00018.bin",
|
| 341 |
+
"transformer.h.46.self_attention.dense.weight": "pytorch_model-00014-of-00018.bin",
|
| 342 |
+
"transformer.h.46.self_attention.query_key_value.weight": "pytorch_model-00014-of-00018.bin",
|
| 343 |
+
"transformer.h.47.ln_attn.bias": "pytorch_model-00014-of-00018.bin",
|
| 344 |
+
"transformer.h.47.ln_attn.weight": "pytorch_model-00014-of-00018.bin",
|
| 345 |
+
"transformer.h.47.ln_mlp.bias": "pytorch_model-00014-of-00018.bin",
|
| 346 |
+
"transformer.h.47.ln_mlp.weight": "pytorch_model-00014-of-00018.bin",
|
| 347 |
+
"transformer.h.47.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00018.bin",
|
| 348 |
+
"transformer.h.47.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00018.bin",
|
| 349 |
+
"transformer.h.47.self_attention.dense.weight": "pytorch_model-00014-of-00018.bin",
|
| 350 |
+
"transformer.h.47.self_attention.query_key_value.weight": "pytorch_model-00014-of-00018.bin",
|
| 351 |
+
"transformer.h.48.ln_attn.bias": "pytorch_model-00014-of-00018.bin",
|
| 352 |
+
"transformer.h.48.ln_attn.weight": "pytorch_model-00014-of-00018.bin",
|
| 353 |
+
"transformer.h.48.ln_mlp.bias": "pytorch_model-00014-of-00018.bin",
|
| 354 |
+
"transformer.h.48.ln_mlp.weight": "pytorch_model-00014-of-00018.bin",
|
| 355 |
+
"transformer.h.48.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00018.bin",
|
| 356 |
+
"transformer.h.48.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00018.bin",
|
| 357 |
+
"transformer.h.48.self_attention.dense.weight": "pytorch_model-00014-of-00018.bin",
|
| 358 |
+
"transformer.h.48.self_attention.query_key_value.weight": "pytorch_model-00014-of-00018.bin",
|
| 359 |
+
"transformer.h.49.ln_attn.bias": "pytorch_model-00015-of-00018.bin",
|
| 360 |
+
"transformer.h.49.ln_attn.weight": "pytorch_model-00015-of-00018.bin",
|
| 361 |
+
"transformer.h.49.ln_mlp.bias": "pytorch_model-00015-of-00018.bin",
|
| 362 |
+
"transformer.h.49.ln_mlp.weight": "pytorch_model-00015-of-00018.bin",
|
| 363 |
+
"transformer.h.49.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00018.bin",
|
| 364 |
+
"transformer.h.49.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00018.bin",
|
| 365 |
+
"transformer.h.49.self_attention.dense.weight": "pytorch_model-00015-of-00018.bin",
|
| 366 |
+
"transformer.h.49.self_attention.query_key_value.weight": "pytorch_model-00015-of-00018.bin",
|
| 367 |
+
"transformer.h.5.ln_attn.bias": "pytorch_model-00002-of-00018.bin",
|
| 368 |
+
"transformer.h.5.ln_attn.weight": "pytorch_model-00002-of-00018.bin",
|
| 369 |
+
"transformer.h.5.ln_mlp.bias": "pytorch_model-00002-of-00018.bin",
|
| 370 |
+
"transformer.h.5.ln_mlp.weight": "pytorch_model-00002-of-00018.bin",
|
| 371 |
+
"transformer.h.5.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00018.bin",
|
| 372 |
+
"transformer.h.5.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00018.bin",
|
| 373 |
+
"transformer.h.5.self_attention.dense.weight": "pytorch_model-00002-of-00018.bin",
|
| 374 |
+
"transformer.h.5.self_attention.query_key_value.weight": "pytorch_model-00002-of-00018.bin",
|
| 375 |
+
"transformer.h.50.ln_attn.bias": "pytorch_model-00015-of-00018.bin",
|
| 376 |
+
"transformer.h.50.ln_attn.weight": "pytorch_model-00015-of-00018.bin",
|
| 377 |
+
"transformer.h.50.ln_mlp.bias": "pytorch_model-00015-of-00018.bin",
|
| 378 |
+
"transformer.h.50.ln_mlp.weight": "pytorch_model-00015-of-00018.bin",
|
| 379 |
+
"transformer.h.50.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00018.bin",
|
| 380 |
+
"transformer.h.50.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00018.bin",
|
| 381 |
+
"transformer.h.50.self_attention.dense.weight": "pytorch_model-00015-of-00018.bin",
|
| 382 |
+
"transformer.h.50.self_attention.query_key_value.weight": "pytorch_model-00015-of-00018.bin",
|
| 383 |
+
"transformer.h.51.ln_attn.bias": "pytorch_model-00015-of-00018.bin",
|
| 384 |
+
"transformer.h.51.ln_attn.weight": "pytorch_model-00015-of-00018.bin",
|
| 385 |
+
"transformer.h.51.ln_mlp.bias": "pytorch_model-00015-of-00018.bin",
|
| 386 |
+
"transformer.h.51.ln_mlp.weight": "pytorch_model-00015-of-00018.bin",
|
| 387 |
+
"transformer.h.51.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00018.bin",
|
| 388 |
+
"transformer.h.51.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00018.bin",
|
| 389 |
+
"transformer.h.51.self_attention.dense.weight": "pytorch_model-00015-of-00018.bin",
|
| 390 |
+
"transformer.h.51.self_attention.query_key_value.weight": "pytorch_model-00015-of-00018.bin",
|
| 391 |
+
"transformer.h.52.ln_attn.bias": "pytorch_model-00016-of-00018.bin",
|
| 392 |
+
"transformer.h.52.ln_attn.weight": "pytorch_model-00016-of-00018.bin",
|
| 393 |
+
"transformer.h.52.ln_mlp.bias": "pytorch_model-00016-of-00018.bin",
|
| 394 |
+
"transformer.h.52.ln_mlp.weight": "pytorch_model-00016-of-00018.bin",
|
| 395 |
+
"transformer.h.52.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00018.bin",
|
| 396 |
+
"transformer.h.52.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00018.bin",
|
| 397 |
+
"transformer.h.52.self_attention.dense.weight": "pytorch_model-00016-of-00018.bin",
|
| 398 |
+
"transformer.h.52.self_attention.query_key_value.weight": "pytorch_model-00016-of-00018.bin",
|
| 399 |
+
"transformer.h.53.ln_attn.bias": "pytorch_model-00016-of-00018.bin",
|
| 400 |
+
"transformer.h.53.ln_attn.weight": "pytorch_model-00016-of-00018.bin",
|
| 401 |
+
"transformer.h.53.ln_mlp.bias": "pytorch_model-00016-of-00018.bin",
|
| 402 |
+
"transformer.h.53.ln_mlp.weight": "pytorch_model-00016-of-00018.bin",
|
| 403 |
+
"transformer.h.53.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00018.bin",
|
| 404 |
+
"transformer.h.53.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00018.bin",
|
| 405 |
+
"transformer.h.53.self_attention.dense.weight": "pytorch_model-00016-of-00018.bin",
|
| 406 |
+
"transformer.h.53.self_attention.query_key_value.weight": "pytorch_model-00016-of-00018.bin",
|
| 407 |
+
"transformer.h.54.ln_attn.bias": "pytorch_model-00016-of-00018.bin",
|
| 408 |
+
"transformer.h.54.ln_attn.weight": "pytorch_model-00016-of-00018.bin",
|
| 409 |
+
"transformer.h.54.ln_mlp.bias": "pytorch_model-00016-of-00018.bin",
|
| 410 |
+
"transformer.h.54.ln_mlp.weight": "pytorch_model-00016-of-00018.bin",
|
| 411 |
+
"transformer.h.54.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00018.bin",
|
| 412 |
+
"transformer.h.54.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00018.bin",
|
| 413 |
+
"transformer.h.54.self_attention.dense.weight": "pytorch_model-00016-of-00018.bin",
|
| 414 |
+
"transformer.h.54.self_attention.query_key_value.weight": "pytorch_model-00016-of-00018.bin",
|
| 415 |
+
"transformer.h.55.ln_attn.bias": "pytorch_model-00016-of-00018.bin",
|
| 416 |
+
"transformer.h.55.ln_attn.weight": "pytorch_model-00016-of-00018.bin",
|
| 417 |
+
"transformer.h.55.ln_mlp.bias": "pytorch_model-00016-of-00018.bin",
|
| 418 |
+
"transformer.h.55.ln_mlp.weight": "pytorch_model-00016-of-00018.bin",
|
| 419 |
+
"transformer.h.55.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00018.bin",
|
| 420 |
+
"transformer.h.55.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00018.bin",
|
| 421 |
+
"transformer.h.55.self_attention.dense.weight": "pytorch_model-00016-of-00018.bin",
|
| 422 |
+
"transformer.h.55.self_attention.query_key_value.weight": "pytorch_model-00016-of-00018.bin",
|
| 423 |
+
"transformer.h.56.ln_attn.bias": "pytorch_model-00017-of-00018.bin",
|
| 424 |
+
"transformer.h.56.ln_attn.weight": "pytorch_model-00017-of-00018.bin",
|
| 425 |
+
"transformer.h.56.ln_mlp.bias": "pytorch_model-00017-of-00018.bin",
|
| 426 |
+
"transformer.h.56.ln_mlp.weight": "pytorch_model-00017-of-00018.bin",
|
| 427 |
+
"transformer.h.56.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00018.bin",
|
| 428 |
+
"transformer.h.56.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00018.bin",
|
| 429 |
+
"transformer.h.56.self_attention.dense.weight": "pytorch_model-00017-of-00018.bin",
|
| 430 |
+
"transformer.h.56.self_attention.query_key_value.weight": "pytorch_model-00017-of-00018.bin",
|
| 431 |
+
"transformer.h.57.ln_attn.bias": "pytorch_model-00017-of-00018.bin",
|
| 432 |
+
"transformer.h.57.ln_attn.weight": "pytorch_model-00017-of-00018.bin",
|
| 433 |
+
"transformer.h.57.ln_mlp.bias": "pytorch_model-00017-of-00018.bin",
|
| 434 |
+
"transformer.h.57.ln_mlp.weight": "pytorch_model-00017-of-00018.bin",
|
| 435 |
+
"transformer.h.57.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00018.bin",
|
| 436 |
+
"transformer.h.57.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00018.bin",
|
| 437 |
+
"transformer.h.57.self_attention.dense.weight": "pytorch_model-00017-of-00018.bin",
|
| 438 |
+
"transformer.h.57.self_attention.query_key_value.weight": "pytorch_model-00017-of-00018.bin",
|
| 439 |
+
"transformer.h.58.ln_attn.bias": "pytorch_model-00017-of-00018.bin",
|
| 440 |
+
"transformer.h.58.ln_attn.weight": "pytorch_model-00017-of-00018.bin",
|
| 441 |
+
"transformer.h.58.ln_mlp.bias": "pytorch_model-00017-of-00018.bin",
|
| 442 |
+
"transformer.h.58.ln_mlp.weight": "pytorch_model-00017-of-00018.bin",
|
| 443 |
+
"transformer.h.58.mlp.dense_4h_to_h.weight": "pytorch_model-00018-of-00018.bin",
|
| 444 |
+
"transformer.h.58.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00018.bin",
|
| 445 |
+
"transformer.h.58.self_attention.dense.weight": "pytorch_model-00017-of-00018.bin",
|
| 446 |
+
"transformer.h.58.self_attention.query_key_value.weight": "pytorch_model-00017-of-00018.bin",
|
| 447 |
+
"transformer.h.59.ln_attn.bias": "pytorch_model-00018-of-00018.bin",
|
| 448 |
+
"transformer.h.59.ln_attn.weight": "pytorch_model-00018-of-00018.bin",
|
| 449 |
+
"transformer.h.59.ln_mlp.bias": "pytorch_model-00018-of-00018.bin",
|
| 450 |
+
"transformer.h.59.ln_mlp.weight": "pytorch_model-00018-of-00018.bin",
|
| 451 |
+
"transformer.h.59.mlp.dense_4h_to_h.weight": "pytorch_model-00018-of-00018.bin",
|
| 452 |
+
"transformer.h.59.mlp.dense_h_to_4h.weight": "pytorch_model-00018-of-00018.bin",
|
| 453 |
+
"transformer.h.59.self_attention.dense.weight": "pytorch_model-00018-of-00018.bin",
|
| 454 |
+
"transformer.h.59.self_attention.query_key_value.weight": "pytorch_model-00018-of-00018.bin",
|
| 455 |
+
"transformer.h.6.ln_attn.bias": "pytorch_model-00002-of-00018.bin",
|
| 456 |
+
"transformer.h.6.ln_attn.weight": "pytorch_model-00002-of-00018.bin",
|
| 457 |
+
"transformer.h.6.ln_mlp.bias": "pytorch_model-00002-of-00018.bin",
|
| 458 |
+
"transformer.h.6.ln_mlp.weight": "pytorch_model-00002-of-00018.bin",
|
| 459 |
+
"transformer.h.6.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00018.bin",
|
| 460 |
+
"transformer.h.6.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00018.bin",
|
| 461 |
+
"transformer.h.6.self_attention.dense.weight": "pytorch_model-00002-of-00018.bin",
|
| 462 |
+
"transformer.h.6.self_attention.query_key_value.weight": "pytorch_model-00002-of-00018.bin",
|
| 463 |
+
"transformer.h.7.ln_attn.bias": "pytorch_model-00003-of-00018.bin",
|
| 464 |
+
"transformer.h.7.ln_attn.weight": "pytorch_model-00003-of-00018.bin",
|
| 465 |
+
"transformer.h.7.ln_mlp.bias": "pytorch_model-00003-of-00018.bin",
|
| 466 |
+
"transformer.h.7.ln_mlp.weight": "pytorch_model-00003-of-00018.bin",
|
| 467 |
+
"transformer.h.7.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00018.bin",
|
| 468 |
+
"transformer.h.7.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00018.bin",
|
| 469 |
+
"transformer.h.7.self_attention.dense.weight": "pytorch_model-00003-of-00018.bin",
|
| 470 |
+
"transformer.h.7.self_attention.query_key_value.weight": "pytorch_model-00003-of-00018.bin",
|
| 471 |
+
"transformer.h.8.ln_attn.bias": "pytorch_model-00003-of-00018.bin",
|
| 472 |
+
"transformer.h.8.ln_attn.weight": "pytorch_model-00003-of-00018.bin",
|
| 473 |
+
"transformer.h.8.ln_mlp.bias": "pytorch_model-00003-of-00018.bin",
|
| 474 |
+
"transformer.h.8.ln_mlp.weight": "pytorch_model-00003-of-00018.bin",
|
| 475 |
+
"transformer.h.8.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00018.bin",
|
| 476 |
+
"transformer.h.8.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00018.bin",
|
| 477 |
+
"transformer.h.8.self_attention.dense.weight": "pytorch_model-00003-of-00018.bin",
|
| 478 |
+
"transformer.h.8.self_attention.query_key_value.weight": "pytorch_model-00003-of-00018.bin",
|
| 479 |
+
"transformer.h.9.ln_attn.bias": "pytorch_model-00003-of-00018.bin",
|
| 480 |
+
"transformer.h.9.ln_attn.weight": "pytorch_model-00003-of-00018.bin",
|
| 481 |
+
"transformer.h.9.ln_mlp.bias": "pytorch_model-00003-of-00018.bin",
|
| 482 |
+
"transformer.h.9.ln_mlp.weight": "pytorch_model-00003-of-00018.bin",
|
| 483 |
+
"transformer.h.9.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00018.bin",
|
| 484 |
+
"transformer.h.9.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00018.bin",
|
| 485 |
+
"transformer.h.9.self_attention.dense.weight": "pytorch_model-00003-of-00018.bin",
|
| 486 |
+
"transformer.h.9.self_attention.query_key_value.weight": "pytorch_model-00003-of-00018.bin",
|
| 487 |
+
"transformer.ln_f.bias": "pytorch_model-00018-of-00018.bin",
|
| 488 |
+
"transformer.ln_f.weight": "pytorch_model-00018-of-00018.bin",
|
| 489 |
+
"transformer.word_embeddings.weight": "pytorch_model-00001-of-00018.bin"
|
| 490 |
+
}
|
| 491 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
">>TITLE<<",
|
| 4 |
+
">>ABSTRACT<<",
|
| 5 |
+
">>INTRODUCTION<<",
|
| 6 |
+
">>SUMMARY<<",
|
| 7 |
+
">>COMMENT<<",
|
| 8 |
+
">>ANSWER<<",
|
| 9 |
+
">>QUESTION<<",
|
| 10 |
+
">>DOMAIN<<",
|
| 11 |
+
">>PREFIX<<",
|
| 12 |
+
">>SUFFIX<<",
|
| 13 |
+
">>MIDDLE<<"
|
| 14 |
+
],
|
| 15 |
+
"eos_token": "<|endoftext|>",
|
| 16 |
+
"pad_token": "[PAD]"
|
| 17 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"clean_up_tokenization_spaces": true,
|
| 4 |
+
"eos_token": "<|endoftext|>",
|
| 5 |
+
"model_max_length": 2048,
|
| 6 |
+
"padding_side": "right",
|
| 7 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 8 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,658 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 1.9930151338766007,
|
| 5 |
+
"global_step": 214,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 0.02,
|
| 12 |
+
"learning_rate": 2e-05,
|
| 13 |
+
"loss": 0.8616,
|
| 14 |
+
"step": 2
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"epoch": 0.04,
|
| 18 |
+
"learning_rate": 1.9995608365087945e-05,
|
| 19 |
+
"loss": 0.7122,
|
| 20 |
+
"step": 4
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"epoch": 0.06,
|
| 24 |
+
"learning_rate": 1.9982437317643218e-05,
|
| 25 |
+
"loss": 0.6609,
|
| 26 |
+
"step": 6
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"epoch": 0.07,
|
| 30 |
+
"learning_rate": 1.996049842615217e-05,
|
| 31 |
+
"loss": 0.6289,
|
| 32 |
+
"step": 8
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"epoch": 0.09,
|
| 36 |
+
"learning_rate": 1.992981096013517e-05,
|
| 37 |
+
"loss": 0.6091,
|
| 38 |
+
"step": 10
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.11,
|
| 42 |
+
"learning_rate": 1.9890401873221642e-05,
|
| 43 |
+
"loss": 0.5863,
|
| 44 |
+
"step": 12
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.13,
|
| 48 |
+
"learning_rate": 1.984230577947597e-05,
|
| 49 |
+
"loss": 0.5834,
|
| 50 |
+
"step": 14
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"epoch": 0.15,
|
| 54 |
+
"learning_rate": 1.9785564922995042e-05,
|
| 55 |
+
"loss": 0.5628,
|
| 56 |
+
"step": 16
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"epoch": 0.17,
|
| 60 |
+
"learning_rate": 1.972022914080411e-05,
|
| 61 |
+
"loss": 0.5446,
|
| 62 |
+
"step": 18
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"epoch": 0.19,
|
| 66 |
+
"learning_rate": 1.964635581908359e-05,
|
| 67 |
+
"loss": 0.5434,
|
| 68 |
+
"step": 20
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"epoch": 0.2,
|
| 72 |
+
"learning_rate": 1.9564009842765225e-05,
|
| 73 |
+
"loss": 0.5196,
|
| 74 |
+
"step": 22
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 0.22,
|
| 78 |
+
"learning_rate": 1.9473263538541916e-05,
|
| 79 |
+
"loss": 0.5292,
|
| 80 |
+
"step": 24
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.24,
|
| 84 |
+
"learning_rate": 1.9374196611341212e-05,
|
| 85 |
+
"loss": 0.5139,
|
| 86 |
+
"step": 26
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.26,
|
| 90 |
+
"learning_rate": 1.9266896074318335e-05,
|
| 91 |
+
"loss": 0.5088,
|
| 92 |
+
"step": 28
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"epoch": 0.28,
|
| 96 |
+
"learning_rate": 1.9151456172430186e-05,
|
| 97 |
+
"loss": 0.5079,
|
| 98 |
+
"step": 30
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"epoch": 0.3,
|
| 102 |
+
"learning_rate": 1.9027978299657436e-05,
|
| 103 |
+
"loss": 0.5086,
|
| 104 |
+
"step": 32
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"epoch": 0.32,
|
| 108 |
+
"learning_rate": 1.8896570909947477e-05,
|
| 109 |
+
"loss": 0.5024,
|
| 110 |
+
"step": 34
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"epoch": 0.34,
|
| 114 |
+
"learning_rate": 1.875734942195637e-05,
|
| 115 |
+
"loss": 0.5046,
|
| 116 |
+
"step": 36
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"epoch": 0.35,
|
| 120 |
+
"learning_rate": 1.8610436117673557e-05,
|
| 121 |
+
"loss": 0.4777,
|
| 122 |
+
"step": 38
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.37,
|
| 126 |
+
"learning_rate": 1.845596003501826e-05,
|
| 127 |
+
"loss": 0.5006,
|
| 128 |
+
"step": 40
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.39,
|
| 132 |
+
"learning_rate": 1.829405685450202e-05,
|
| 133 |
+
"loss": 0.4796,
|
| 134 |
+
"step": 42
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"epoch": 0.41,
|
| 138 |
+
"learning_rate": 1.8124868780056814e-05,
|
| 139 |
+
"loss": 0.4701,
|
| 140 |
+
"step": 44
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"epoch": 0.43,
|
| 144 |
+
"learning_rate": 1.7948544414133534e-05,
|
| 145 |
+
"loss": 0.4784,
|
| 146 |
+
"step": 46
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"epoch": 0.45,
|
| 150 |
+
"learning_rate": 1.7765238627180424e-05,
|
| 151 |
+
"loss": 0.4773,
|
| 152 |
+
"step": 48
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"epoch": 0.47,
|
| 156 |
+
"learning_rate": 1.7575112421616203e-05,
|
| 157 |
+
"loss": 0.4783,
|
| 158 |
+
"step": 50
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 0.48,
|
| 162 |
+
"learning_rate": 1.7378332790417275e-05,
|
| 163 |
+
"loss": 0.4772,
|
| 164 |
+
"step": 52
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.5,
|
| 168 |
+
"learning_rate": 1.717507257044331e-05,
|
| 169 |
+
"loss": 0.4671,
|
| 170 |
+
"step": 54
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.52,
|
| 174 |
+
"learning_rate": 1.6965510290629973e-05,
|
| 175 |
+
"loss": 0.4716,
|
| 176 |
+
"step": 56
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"epoch": 0.54,
|
| 180 |
+
"learning_rate": 1.6749830015182106e-05,
|
| 181 |
+
"loss": 0.4539,
|
| 182 |
+
"step": 58
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"epoch": 0.56,
|
| 186 |
+
"learning_rate": 1.6528221181905217e-05,
|
| 187 |
+
"loss": 0.4613,
|
| 188 |
+
"step": 60
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"epoch": 0.58,
|
| 192 |
+
"learning_rate": 1.6300878435817115e-05,
|
| 193 |
+
"loss": 0.4758,
|
| 194 |
+
"step": 62
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"epoch": 0.6,
|
| 198 |
+
"learning_rate": 1.6068001458185934e-05,
|
| 199 |
+
"loss": 0.4623,
|
| 200 |
+
"step": 64
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"epoch": 0.61,
|
| 204 |
+
"learning_rate": 1.5829794791144723e-05,
|
| 205 |
+
"loss": 0.4734,
|
| 206 |
+
"step": 66
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.63,
|
| 210 |
+
"learning_rate": 1.5586467658036526e-05,
|
| 211 |
+
"loss": 0.4512,
|
| 212 |
+
"step": 68
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.65,
|
| 216 |
+
"learning_rate": 1.533823377964791e-05,
|
| 217 |
+
"loss": 0.4713,
|
| 218 |
+
"step": 70
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"epoch": 0.67,
|
| 222 |
+
"learning_rate": 1.5085311186492206e-05,
|
| 223 |
+
"loss": 0.4789,
|
| 224 |
+
"step": 72
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"epoch": 0.69,
|
| 228 |
+
"learning_rate": 1.482792202730745e-05,
|
| 229 |
+
"loss": 0.5663,
|
| 230 |
+
"step": 74
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"epoch": 0.71,
|
| 234 |
+
"learning_rate": 1.4566292373937133e-05,
|
| 235 |
+
"loss": 0.4551,
|
| 236 |
+
"step": 76
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"epoch": 0.73,
|
| 240 |
+
"learning_rate": 1.4300652022765207e-05,
|
| 241 |
+
"loss": 0.461,
|
| 242 |
+
"step": 78
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"epoch": 0.75,
|
| 246 |
+
"learning_rate": 1.4031234292879726e-05,
|
| 247 |
+
"loss": 0.4673,
|
| 248 |
+
"step": 80
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.76,
|
| 252 |
+
"learning_rate": 1.3758275821142382e-05,
|
| 253 |
+
"loss": 0.4589,
|
| 254 |
+
"step": 82
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.78,
|
| 258 |
+
"learning_rate": 1.348201635434399e-05,
|
| 259 |
+
"loss": 0.4495,
|
| 260 |
+
"step": 84
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"epoch": 0.8,
|
| 264 |
+
"learning_rate": 1.3202698538628376e-05,
|
| 265 |
+
"loss": 0.4645,
|
| 266 |
+
"step": 86
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 0.82,
|
| 270 |
+
"learning_rate": 1.292056770636976e-05,
|
| 271 |
+
"loss": 0.4555,
|
| 272 |
+
"step": 88
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"epoch": 0.84,
|
| 276 |
+
"learning_rate": 1.2635871660690677e-05,
|
| 277 |
+
"loss": 0.4464,
|
| 278 |
+
"step": 90
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"epoch": 0.86,
|
| 282 |
+
"learning_rate": 1.234886045780984e-05,
|
| 283 |
+
"loss": 0.4646,
|
| 284 |
+
"step": 92
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"epoch": 0.88,
|
| 288 |
+
"learning_rate": 1.2059786187410984e-05,
|
| 289 |
+
"loss": 0.4599,
|
| 290 |
+
"step": 94
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.89,
|
| 294 |
+
"learning_rate": 1.176890275122573e-05,
|
| 295 |
+
"loss": 0.4534,
|
| 296 |
+
"step": 96
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.91,
|
| 300 |
+
"learning_rate": 1.1476465640024814e-05,
|
| 301 |
+
"loss": 0.4744,
|
| 302 |
+
"step": 98
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"epoch": 0.93,
|
| 306 |
+
"learning_rate": 1.1182731709213658e-05,
|
| 307 |
+
"loss": 0.4626,
|
| 308 |
+
"step": 100
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"epoch": 0.95,
|
| 312 |
+
"learning_rate": 1.0887958953229349e-05,
|
| 313 |
+
"loss": 0.4407,
|
| 314 |
+
"step": 102
|
| 315 |
+
},
|
| 316 |
+
{
|
| 317 |
+
"epoch": 0.97,
|
| 318 |
+
"learning_rate": 1.0592406278937143e-05,
|
| 319 |
+
"loss": 0.452,
|
| 320 |
+
"step": 104
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"epoch": 0.99,
|
| 324 |
+
"learning_rate": 1.0296333278225599e-05,
|
| 325 |
+
"loss": 0.4496,
|
| 326 |
+
"step": 106
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"epoch": 1.01,
|
| 330 |
+
"learning_rate": 1e-05,
|
| 331 |
+
"loss": 0.4138,
|
| 332 |
+
"step": 108
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 1.02,
|
| 336 |
+
"learning_rate": 9.703666721774403e-06,
|
| 337 |
+
"loss": 0.2924,
|
| 338 |
+
"step": 110
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 1.04,
|
| 342 |
+
"learning_rate": 9.407593721062858e-06,
|
| 343 |
+
"loss": 0.3184,
|
| 344 |
+
"step": 112
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
"epoch": 1.06,
|
| 348 |
+
"learning_rate": 9.112041046770653e-06,
|
| 349 |
+
"loss": 0.2885,
|
| 350 |
+
"step": 114
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"epoch": 1.08,
|
| 354 |
+
"learning_rate": 8.817268290786343e-06,
|
| 355 |
+
"loss": 0.2842,
|
| 356 |
+
"step": 116
|
| 357 |
+
},
|
| 358 |
+
{
|
| 359 |
+
"epoch": 1.1,
|
| 360 |
+
"learning_rate": 8.52353435997519e-06,
|
| 361 |
+
"loss": 0.2763,
|
| 362 |
+
"step": 118
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"epoch": 1.12,
|
| 366 |
+
"learning_rate": 8.231097248774273e-06,
|
| 367 |
+
"loss": 0.2765,
|
| 368 |
+
"step": 120
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"epoch": 1.14,
|
| 372 |
+
"learning_rate": 7.940213812589018e-06,
|
| 373 |
+
"loss": 0.2788,
|
| 374 |
+
"step": 122
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 1.15,
|
| 378 |
+
"learning_rate": 7.651139542190164e-06,
|
| 379 |
+
"loss": 0.2821,
|
| 380 |
+
"step": 124
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 1.17,
|
| 384 |
+
"learning_rate": 7.364128339309326e-06,
|
| 385 |
+
"loss": 0.2834,
|
| 386 |
+
"step": 126
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"epoch": 1.19,
|
| 390 |
+
"learning_rate": 7.079432293630244e-06,
|
| 391 |
+
"loss": 0.2728,
|
| 392 |
+
"step": 128
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"epoch": 1.21,
|
| 396 |
+
"learning_rate": 6.797301461371626e-06,
|
| 397 |
+
"loss": 0.274,
|
| 398 |
+
"step": 130
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"epoch": 1.23,
|
| 402 |
+
"learning_rate": 6.517983645656014e-06,
|
| 403 |
+
"loss": 0.276,
|
| 404 |
+
"step": 132
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"epoch": 1.25,
|
| 408 |
+
"learning_rate": 6.241724178857621e-06,
|
| 409 |
+
"loss": 0.2723,
|
| 410 |
+
"step": 134
|
| 411 |
+
},
|
| 412 |
+
{
|
| 413 |
+
"epoch": 1.27,
|
| 414 |
+
"learning_rate": 5.96876570712028e-06,
|
| 415 |
+
"loss": 0.2876,
|
| 416 |
+
"step": 136
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 1.29,
|
| 420 |
+
"learning_rate": 5.699347977234799e-06,
|
| 421 |
+
"loss": 0.2714,
|
| 422 |
+
"step": 138
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 1.3,
|
| 426 |
+
"learning_rate": 5.43370762606287e-06,
|
| 427 |
+
"loss": 0.2758,
|
| 428 |
+
"step": 140
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"epoch": 1.32,
|
| 432 |
+
"learning_rate": 5.172077972692553e-06,
|
| 433 |
+
"loss": 0.2816,
|
| 434 |
+
"step": 142
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"epoch": 1.34,
|
| 438 |
+
"learning_rate": 4.914688813507798e-06,
|
| 439 |
+
"loss": 0.2787,
|
| 440 |
+
"step": 144
|
| 441 |
+
},
|
| 442 |
+
{
|
| 443 |
+
"epoch": 1.36,
|
| 444 |
+
"learning_rate": 4.661766220352098e-06,
|
| 445 |
+
"loss": 0.2801,
|
| 446 |
+
"step": 146
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"epoch": 1.38,
|
| 450 |
+
"learning_rate": 4.413532341963477e-06,
|
| 451 |
+
"loss": 0.271,
|
| 452 |
+
"step": 148
|
| 453 |
+
},
|
| 454 |
+
{
|
| 455 |
+
"epoch": 1.4,
|
| 456 |
+
"learning_rate": 4.170205208855281e-06,
|
| 457 |
+
"loss": 0.2708,
|
| 458 |
+
"step": 150
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 1.42,
|
| 462 |
+
"learning_rate": 3.931998541814069e-06,
|
| 463 |
+
"loss": 0.2728,
|
| 464 |
+
"step": 152
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 1.43,
|
| 468 |
+
"learning_rate": 3.6991215641828903e-06,
|
| 469 |
+
"loss": 0.2719,
|
| 470 |
+
"step": 154
|
| 471 |
+
},
|
| 472 |
+
{
|
| 473 |
+
"epoch": 1.45,
|
| 474 |
+
"learning_rate": 3.4717788180947855e-06,
|
| 475 |
+
"loss": 0.272,
|
| 476 |
+
"step": 156
|
| 477 |
+
},
|
| 478 |
+
{
|
| 479 |
+
"epoch": 1.47,
|
| 480 |
+
"learning_rate": 3.250169984817897e-06,
|
| 481 |
+
"loss": 0.2724,
|
| 482 |
+
"step": 158
|
| 483 |
+
},
|
| 484 |
+
{
|
| 485 |
+
"epoch": 1.49,
|
| 486 |
+
"learning_rate": 3.0344897093700333e-06,
|
| 487 |
+
"loss": 0.2744,
|
| 488 |
+
"step": 160
|
| 489 |
+
},
|
| 490 |
+
{
|
| 491 |
+
"epoch": 1.51,
|
| 492 |
+
"learning_rate": 2.8249274295566863e-06,
|
| 493 |
+
"loss": 0.2736,
|
| 494 |
+
"step": 162
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"epoch": 1.53,
|
| 498 |
+
"learning_rate": 2.6216672095827267e-06,
|
| 499 |
+
"loss": 0.2681,
|
| 500 |
+
"step": 164
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 1.55,
|
| 504 |
+
"learning_rate": 2.424887578383799e-06,
|
| 505 |
+
"loss": 0.2703,
|
| 506 |
+
"step": 166
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 1.56,
|
| 510 |
+
"learning_rate": 2.234761372819577e-06,
|
| 511 |
+
"loss": 0.2649,
|
| 512 |
+
"step": 168
|
| 513 |
+
},
|
| 514 |
+
{
|
| 515 |
+
"epoch": 1.58,
|
| 516 |
+
"learning_rate": 2.0514555858664663e-06,
|
| 517 |
+
"loss": 0.2781,
|
| 518 |
+
"step": 170
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"epoch": 1.6,
|
| 522 |
+
"learning_rate": 1.875131219943187e-06,
|
| 523 |
+
"loss": 0.2645,
|
| 524 |
+
"step": 172
|
| 525 |
+
},
|
| 526 |
+
{
|
| 527 |
+
"epoch": 1.62,
|
| 528 |
+
"learning_rate": 1.7059431454979825e-06,
|
| 529 |
+
"loss": 0.27,
|
| 530 |
+
"step": 174
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"epoch": 1.64,
|
| 534 |
+
"learning_rate": 1.5440399649817384e-06,
|
| 535 |
+
"loss": 0.2683,
|
| 536 |
+
"step": 176
|
| 537 |
+
},
|
| 538 |
+
{
|
| 539 |
+
"epoch": 1.66,
|
| 540 |
+
"learning_rate": 1.3895638823264447e-06,
|
| 541 |
+
"loss": 0.2645,
|
| 542 |
+
"step": 178
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 1.68,
|
| 546 |
+
"learning_rate": 1.2426505780436326e-06,
|
| 547 |
+
"loss": 0.2712,
|
| 548 |
+
"step": 180
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 1.69,
|
| 552 |
+
"learning_rate": 1.1034290900525279e-06,
|
| 553 |
+
"loss": 0.2621,
|
| 554 |
+
"step": 182
|
| 555 |
+
},
|
| 556 |
+
{
|
| 557 |
+
"epoch": 1.71,
|
| 558 |
+
"learning_rate": 9.720217003425648e-07,
|
| 559 |
+
"loss": 0.268,
|
| 560 |
+
"step": 184
|
| 561 |
+
},
|
| 562 |
+
{
|
| 563 |
+
"epoch": 1.73,
|
| 564 |
+
"learning_rate": 8.485438275698154e-07,
|
| 565 |
+
"loss": 0.2641,
|
| 566 |
+
"step": 186
|
| 567 |
+
},
|
| 568 |
+
{
|
| 569 |
+
"epoch": 1.75,
|
| 570 |
+
"learning_rate": 7.331039256816664e-07,
|
| 571 |
+
"loss": 0.2623,
|
| 572 |
+
"step": 188
|
| 573 |
+
},
|
| 574 |
+
{
|
| 575 |
+
"epoch": 1.77,
|
| 576 |
+
"learning_rate": 6.258033886587911e-07,
|
| 577 |
+
"loss": 0.2714,
|
| 578 |
+
"step": 190
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"epoch": 1.79,
|
| 582 |
+
"learning_rate": 5.267364614580861e-07,
|
| 583 |
+
"loss": 0.2723,
|
| 584 |
+
"step": 192
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 1.81,
|
| 588 |
+
"learning_rate": 4.359901572347758e-07,
|
| 589 |
+
"loss": 0.2611,
|
| 590 |
+
"step": 194
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 1.83,
|
| 594 |
+
"learning_rate": 3.5364418091641374e-07,
|
| 595 |
+
"loss": 0.2724,
|
| 596 |
+
"step": 196
|
| 597 |
+
},
|
| 598 |
+
{
|
| 599 |
+
"epoch": 1.84,
|
| 600 |
+
"learning_rate": 2.7977085919589253e-07,
|
| 601 |
+
"loss": 0.2738,
|
| 602 |
+
"step": 198
|
| 603 |
+
},
|
| 604 |
+
{
|
| 605 |
+
"epoch": 1.86,
|
| 606 |
+
"learning_rate": 2.1443507700495968e-07,
|
| 607 |
+
"loss": 0.2623,
|
| 608 |
+
"step": 200
|
| 609 |
+
},
|
| 610 |
+
{
|
| 611 |
+
"epoch": 1.88,
|
| 612 |
+
"learning_rate": 1.5769422052403172e-07,
|
| 613 |
+
"loss": 0.2695,
|
| 614 |
+
"step": 202
|
| 615 |
+
},
|
| 616 |
+
{
|
| 617 |
+
"epoch": 1.9,
|
| 618 |
+
"learning_rate": 1.0959812677835968e-07,
|
| 619 |
+
"loss": 0.2661,
|
| 620 |
+
"step": 204
|
| 621 |
+
},
|
| 622 |
+
{
|
| 623 |
+
"epoch": 1.92,
|
| 624 |
+
"learning_rate": 7.018903986483083e-08,
|
| 625 |
+
"loss": 0.2712,
|
| 626 |
+
"step": 206
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 1.94,
|
| 630 |
+
"learning_rate": 3.950157384783104e-08,
|
| 631 |
+
"loss": 0.2706,
|
| 632 |
+
"step": 208
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 1.96,
|
| 636 |
+
"learning_rate": 1.7562682356786488e-08,
|
| 637 |
+
"loss": 0.276,
|
| 638 |
+
"step": 210
|
| 639 |
+
},
|
| 640 |
+
{
|
| 641 |
+
"epoch": 1.97,
|
| 642 |
+
"learning_rate": 4.39163491205652e-09,
|
| 643 |
+
"loss": 0.2767,
|
| 644 |
+
"step": 212
|
| 645 |
+
},
|
| 646 |
+
{
|
| 647 |
+
"epoch": 1.99,
|
| 648 |
+
"learning_rate": 0.0,
|
| 649 |
+
"loss": 0.2624,
|
| 650 |
+
"step": 214
|
| 651 |
+
}
|
| 652 |
+
],
|
| 653 |
+
"max_steps": 214,
|
| 654 |
+
"num_train_epochs": 2,
|
| 655 |
+
"total_flos": 1536113535614976.0,
|
| 656 |
+
"trial_name": null,
|
| 657 |
+
"trial_params": null
|
| 658 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fe7ade02010de890951f8d2a3a60933d8a512b39c7bdca5d9951b162a710a84e
|
| 3 |
+
size 5051
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,584 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage == 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# record shared parameters so that they can be recovered based on partners
|
| 124 |
+
# this is because such parameters holding reference only are not saved by optimizer
|
| 125 |
+
shared_params = []
|
| 126 |
+
for param in state_dict["module"]:
|
| 127 |
+
if param not in [*param_names, *buffer_names]:
|
| 128 |
+
for share_param in state_dict["module"]:
|
| 129 |
+
if (state_dict["module"][share_param].data_ptr() == state_dict["module"][param].data_ptr()
|
| 130 |
+
and share_param != param):
|
| 131 |
+
shared_params.append([param, share_param])
|
| 132 |
+
break
|
| 133 |
+
|
| 134 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 135 |
+
|
| 136 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 137 |
+
|
| 138 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 139 |
+
param_shapes=param_shapes,
|
| 140 |
+
shared_params=shared_params,
|
| 141 |
+
ds_version=ds_version,
|
| 142 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 143 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 144 |
+
zero_model_states.append(z_model_state)
|
| 145 |
+
|
| 146 |
+
return zero_model_states
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 150 |
+
|
| 151 |
+
total_files = len(files)
|
| 152 |
+
state_dicts = []
|
| 153 |
+
for f in files:
|
| 154 |
+
state_dicts.append(torch.load(f, map_location=device))
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage == 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage == 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage == 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 219 |
+
elif zero_stage == 3:
|
| 220 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 224 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 225 |
+
return
|
| 226 |
+
|
| 227 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 228 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 229 |
+
|
| 230 |
+
if debug:
|
| 231 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 233 |
+
|
| 234 |
+
wanted_params = len(frozen_param_shapes)
|
| 235 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 236 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 237 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 238 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 239 |
+
|
| 240 |
+
total_params = 0
|
| 241 |
+
total_numel = 0
|
| 242 |
+
for name, shape in frozen_param_shapes.items():
|
| 243 |
+
total_params += 1
|
| 244 |
+
unpartitioned_numel = shape.numel()
|
| 245 |
+
total_numel += unpartitioned_numel
|
| 246 |
+
|
| 247 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 248 |
+
|
| 249 |
+
if debug:
|
| 250 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 251 |
+
|
| 252 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 256 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 257 |
+
|
| 258 |
+
# Reconstruction protocol:
|
| 259 |
+
#
|
| 260 |
+
# XXX: document this
|
| 261 |
+
|
| 262 |
+
if debug:
|
| 263 |
+
for i in range(world_size):
|
| 264 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 265 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 266 |
+
|
| 267 |
+
# XXX: memory usage doubles here (zero2)
|
| 268 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 269 |
+
merged_single_partition_of_fp32_groups = []
|
| 270 |
+
for i in range(num_param_groups):
|
| 271 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 272 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 273 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 274 |
+
avail_numel = sum(
|
| 275 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 276 |
+
|
| 277 |
+
if debug:
|
| 278 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 279 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 280 |
+
# not asserting if there is a mismatch due to possible padding
|
| 281 |
+
print(f"Have {avail_numel} numels to process.")
|
| 282 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 283 |
+
|
| 284 |
+
# params
|
| 285 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 286 |
+
# out-of-core computing solution
|
| 287 |
+
total_numel = 0
|
| 288 |
+
total_params = 0
|
| 289 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 290 |
+
offset = 0
|
| 291 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 292 |
+
for name, shape in shapes.items():
|
| 293 |
+
|
| 294 |
+
unpartitioned_numel = shape.numel()
|
| 295 |
+
total_numel += unpartitioned_numel
|
| 296 |
+
total_params += 1
|
| 297 |
+
|
| 298 |
+
if debug:
|
| 299 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 300 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 301 |
+
offset += unpartitioned_numel
|
| 302 |
+
|
| 303 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 304 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 305 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 306 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 307 |
+
align_to = 2 * world_size
|
| 308 |
+
|
| 309 |
+
def zero2_align(x):
|
| 310 |
+
return align_to * math.ceil(x / align_to)
|
| 311 |
+
|
| 312 |
+
if debug:
|
| 313 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 314 |
+
|
| 315 |
+
offset = zero2_align(offset)
|
| 316 |
+
avail_numel = zero2_align(avail_numel)
|
| 317 |
+
|
| 318 |
+
if debug:
|
| 319 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 320 |
+
|
| 321 |
+
# Sanity check
|
| 322 |
+
if offset != avail_numel:
|
| 323 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 324 |
+
|
| 325 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 329 |
+
state_dict = OrderedDict()
|
| 330 |
+
|
| 331 |
+
# buffers
|
| 332 |
+
buffers = zero_model_states[0].buffers
|
| 333 |
+
state_dict.update(buffers)
|
| 334 |
+
if debug:
|
| 335 |
+
print(f"added {len(buffers)} buffers")
|
| 336 |
+
|
| 337 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 338 |
+
|
| 339 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 340 |
+
|
| 341 |
+
# recover shared parameters
|
| 342 |
+
for pair in zero_model_states[0].shared_params:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 392 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 393 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 394 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 395 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 396 |
+
|
| 397 |
+
# merge list of dicts, preserving order
|
| 398 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 399 |
+
|
| 400 |
+
if debug:
|
| 401 |
+
for i in range(world_size):
|
| 402 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 403 |
+
|
| 404 |
+
wanted_params = len(param_shapes)
|
| 405 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 406 |
+
# not asserting if there is a mismatch due to possible padding
|
| 407 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 408 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 409 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 410 |
+
|
| 411 |
+
# params
|
| 412 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 413 |
+
# out-of-core computing solution
|
| 414 |
+
offset = 0
|
| 415 |
+
total_numel = 0
|
| 416 |
+
total_params = 0
|
| 417 |
+
for name, shape in param_shapes.items():
|
| 418 |
+
|
| 419 |
+
unpartitioned_numel = shape.numel()
|
| 420 |
+
total_numel += unpartitioned_numel
|
| 421 |
+
total_params += 1
|
| 422 |
+
|
| 423 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 424 |
+
|
| 425 |
+
if debug:
|
| 426 |
+
print(
|
| 427 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
# XXX: memory usage doubles here
|
| 431 |
+
state_dict[name] = torch.cat(
|
| 432 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 433 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 434 |
+
offset += partitioned_numel
|
| 435 |
+
|
| 436 |
+
offset *= world_size
|
| 437 |
+
|
| 438 |
+
# Sanity check
|
| 439 |
+
if offset != avail_numel:
|
| 440 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 441 |
+
|
| 442 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 446 |
+
state_dict = OrderedDict()
|
| 447 |
+
|
| 448 |
+
# buffers
|
| 449 |
+
buffers = zero_model_states[0].buffers
|
| 450 |
+
state_dict.update(buffers)
|
| 451 |
+
if debug:
|
| 452 |
+
print(f"added {len(buffers)} buffers")
|
| 453 |
+
|
| 454 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 455 |
+
|
| 456 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 457 |
+
|
| 458 |
+
# recover shared parameters
|
| 459 |
+
for pair in zero_model_states[0].shared_params:
|
| 460 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 461 |
+
|
| 462 |
+
return state_dict
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 466 |
+
"""
|
| 467 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 468 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 469 |
+
via a model hub.
|
| 470 |
+
|
| 471 |
+
Args:
|
| 472 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 473 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 474 |
+
|
| 475 |
+
Returns:
|
| 476 |
+
- pytorch ``state_dict``
|
| 477 |
+
|
| 478 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 479 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 480 |
+
the checkpoint.
|
| 481 |
+
|
| 482 |
+
A typical usage might be ::
|
| 483 |
+
|
| 484 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 485 |
+
# do the training and checkpoint saving
|
| 486 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 487 |
+
model = model.cpu() # move to cpu
|
| 488 |
+
model.load_state_dict(state_dict)
|
| 489 |
+
# submit to model hub or save the model to share with others
|
| 490 |
+
|
| 491 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 492 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 493 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 494 |
+
|
| 495 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 496 |
+
|
| 497 |
+
"""
|
| 498 |
+
if tag is None:
|
| 499 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 500 |
+
if os.path.isfile(latest_path):
|
| 501 |
+
with open(latest_path, 'r') as fd:
|
| 502 |
+
tag = fd.read().strip()
|
| 503 |
+
else:
|
| 504 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 505 |
+
|
| 506 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 507 |
+
|
| 508 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 509 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 510 |
+
|
| 511 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 515 |
+
"""
|
| 516 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 517 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 518 |
+
|
| 519 |
+
Args:
|
| 520 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 521 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 522 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 523 |
+
"""
|
| 524 |
+
|
| 525 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 526 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 527 |
+
torch.save(state_dict, output_file)
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 531 |
+
"""
|
| 532 |
+
1. Put the provided model to cpu
|
| 533 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 534 |
+
3. Load it into the provided model
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``model``: the model object to update
|
| 538 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 539 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 540 |
+
|
| 541 |
+
Returns:
|
| 542 |
+
- ``model`: modified model
|
| 543 |
+
|
| 544 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 545 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 546 |
+
conveniently placed for you in the checkpoint folder.
|
| 547 |
+
|
| 548 |
+
A typical usage might be ::
|
| 549 |
+
|
| 550 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 551 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 552 |
+
# submit to model hub or save the model to share with others
|
| 553 |
+
|
| 554 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 555 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 556 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 557 |
+
|
| 558 |
+
"""
|
| 559 |
+
logger.info(f"Extracting fp32 weights")
|
| 560 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 561 |
+
|
| 562 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 563 |
+
model = model.cpu()
|
| 564 |
+
model.load_state_dict(state_dict, strict=False)
|
| 565 |
+
|
| 566 |
+
return model
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
if __name__ == "__main__":
|
| 570 |
+
|
| 571 |
+
parser = argparse.ArgumentParser()
|
| 572 |
+
parser.add_argument("checkpoint_dir",
|
| 573 |
+
type=str,
|
| 574 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 575 |
+
parser.add_argument(
|
| 576 |
+
"output_file",
|
| 577 |
+
type=str,
|
| 578 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 579 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 580 |
+
args = parser.parse_args()
|
| 581 |
+
|
| 582 |
+
debug = args.debug
|
| 583 |
+
|
| 584 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|