Image-to-Image
Diffusers
xingjianleng commited on
Commit
b71c280
Β·
verified Β·
1 Parent(s): 35f7a67

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -25,7 +25,7 @@ library_name: diffusers
25
  <a href="https://huggingface.co/REPA-E">πŸ€— Models</a> &ensp;
26
  <a href="https://arxiv.org/abs/2504.10483">πŸ“ƒ Paper</a> &ensp;
27
  <br>
28
- <a href="https://paperswithcode.com/sota/image-generation-on-imagenet-256x256?p=repa-e-unlocking-vae-for-end-to-end-tuning-of"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/repa-e-unlocking-vae-for-end-to-end-tuning-of/image-generation-on-imagenet-256x256" alt="PWC"></a>
29
  </p>
30
 
31
 
@@ -41,7 +41,7 @@ We address a fundamental question: ***Can latent diffusion models and their VAE
41
  <img src="https://github.com/End2End-Diffusion/REPA-E/raw/main/assets/overview.jpg" width="100%" alt="teaser">
42
  </p>
43
 
44
- **REPA-E** significantly accelerates training β€” achieving over **17Γ—** speedup compared to REPA and **45Γ—** over the vanilla training recipe. Interestingly, end-to-end tuning also improves the VAE itself: the resulting **E2E-VAE** provides better latent structure and serves as a **drop-in replacement** for existing VAEs (e.g., SD-VAE), improving convergence and generation quality across diverse LDM architectures. Our method achieves state-of-the-art FID scores on ImageNet 256Γ—256: **1.26** with CFG and **1.83** without CFG.
45
 
46
 
47
  ## Usage and Training
 
25
  <a href="https://huggingface.co/REPA-E">πŸ€— Models</a> &ensp;
26
  <a href="https://arxiv.org/abs/2504.10483">πŸ“ƒ Paper</a> &ensp;
27
  <br>
28
+ <!-- <a href="https://paperswithcode.com/sota/image-generation-on-imagenet-256x256?p=repa-e-unlocking-vae-for-end-to-end-tuning-of"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/repa-e-unlocking-vae-for-end-to-end-tuning-of/image-generation-on-imagenet-256x256" alt="PWC"></a> -->
29
  </p>
30
 
31
 
 
41
  <img src="https://github.com/End2End-Diffusion/REPA-E/raw/main/assets/overview.jpg" width="100%" alt="teaser">
42
  </p>
43
 
44
+ **REPA-E** significantly accelerates training β€” achieving over **17Γ—** speedup compared to REPA and **45Γ—** over the vanilla training recipe. Interestingly, end-to-end tuning also improves the VAE itself: the resulting **E2E-VAE** provides better latent structure and serves as a **drop-in replacement** for existing VAEs (e.g., SD-VAE), improving convergence and generation quality across diverse LDM architectures. Our method achieves state-of-the-art FID scores on ImageNet 256Γ—256: **1.12** with CFG and **1.69** without CFG.
45
 
46
 
47
  ## Usage and Training