--- license: other license_name: nvidia-open-model-license license_link: https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license base_model: nvidia/Llama-4-Maverick-17B-128E-Eagle3 tags: - speculative-decoding - eagle3 - llama3 - llama4 - vllm - speculators --- # Llama-4-Maverick-17B-128E-Instruct-speculators.eagle3 ## Model Overview - **Verifier:** meta-llama/Llama-4-Maverick-17B-128E-Instruct - **Speculative Decoding Algorithm:** EAGLE-3 - **Model Architecture:** Eagle3Speculator - **Release Date:** 09/17/2025 - **Version:** 1.0 - **Model Developers:** RedHat This is a speculator model designed for use with [meta-llama/Llama-4-Maverick-17B-128E-Instruct](https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct), based on the [EAGLE-3](https://arxiv.org/abs/2503.01840) speculative decoding algorithm. It was converted into the [speculators](https://github.com/neuralmagic/speculators) format from the model [nvidia/Llama-4-Maverick-17B-128E-Eagle3](https://huggingface.co/nvidia/Llama-4-Maverick-17B-128E-Eagle3). This model should be used with the [meta-llama/Llama-4-Maverick-17B-128E-Instruct](https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct) chat template, specifically through the `/chat/completions` endpoint. ## Use with vLLM ```bash vllm serve meta-llama/Llama-4-Maverick-17B-128E-Instruct \ -tp 8 \ --speculative-config '{ "model": "RedHatAI/Llama-4-Maverick-17B-128E-Instruct-speculators.eagle3", "num_speculative_tokens": 3, "method": "eagle3" }' ``` ## Evaluations

Use cases

Use Case Dataset Number of Samples
Coding HumanEval 168
Math Reasoning gsm8k 80
Text Summarization CNN/Daily Mail 80

Acceptance lengths

Use Case k=1 k=2 k=3 k=4 k=5 k=6 k=7
Coding 1.83 2.45 2.94 3.26 3.47 3.57 3.62
Math Reasoning 1.86 2.56 3.08 3.53 3.73 3.91 4.02
Text Summarization 1.69 2.12 2.37 2.52 2.60 2.63 2.63

Performance benchmarking (2xA100)

Coding
Math Reasoning
Text Summarization
Details Configuration - temperature: 0.6 - top_p: 0.9 - repetitions: 3 - time per experiment: 3min - hardware: 8xB200 - vLLM version: 0.11.0 - GuideLLM version: 0.3.0 Command ```bash GUIDELLM__PREFERRED_ROUTE="chat_completions" \ guidellm benchmark \ --target "http://localhost:8000/v1" \ --data "RedHatAI/speculator_benchmarks" \ --data-args '{"data_files": "HumanEval.jsonl"}' \ --rate-type sweep \ --max-seconds 180 \ --output-path "Llama-4-Maverick-HumanEval.json" \ --backend-args '{"extra_body": {"chat_completions": {"temperature":0.6, "top_p":0.9}}}' ```
## Citation If you use this model, please cite both the original NVIDIA model and the Speculators library: ```bibtex @misc{nvidia2025llama4maverick, title={Llama 4 Maverick 17B Eagle3}, author={NVIDIA Corporation}, year={2025}, publisher={Hugging Face} } @misc{speculators2024, title={Speculators: A Unified Library for Speculative Decoding}, author={Neural Magic}, year={2024}, url={https://github.com/neuralmagic/speculators} } ``` ## Acknowledgments - Original model by NVIDIA Corporation - Conversion and formatting for Speculators/vLLM compatibility - Based on Eagle3 architecture with Llama3 draft head targeting Llama4 verifier