uploaded readme
Browse files
README.md
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Quantization made by Richard Erkhov.
|
| 2 |
+
|
| 3 |
+
[Github](https://github.com/RichardErkhov)
|
| 4 |
+
|
| 5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
| 6 |
+
|
| 7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
Zenith-7B-dpo-v1 - GGUF
|
| 11 |
+
- Model creator: https://huggingface.co/Xenon1/
|
| 12 |
+
- Original model: https://huggingface.co/Xenon1/Zenith-7B-dpo-v1/
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
| Name | Quant method | Size |
|
| 16 |
+
| ---- | ---- | ---- |
|
| 17 |
+
| [Zenith-7B-dpo-v1.Q2_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q2_K.gguf) | Q2_K | 2.53GB |
|
| 18 |
+
| [Zenith-7B-dpo-v1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
|
| 19 |
+
| [Zenith-7B-dpo-v1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.IQ3_S.gguf) | IQ3_S | 2.96GB |
|
| 20 |
+
| [Zenith-7B-dpo-v1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
|
| 21 |
+
| [Zenith-7B-dpo-v1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.IQ3_M.gguf) | IQ3_M | 3.06GB |
|
| 22 |
+
| [Zenith-7B-dpo-v1.Q3_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q3_K.gguf) | Q3_K | 3.28GB |
|
| 23 |
+
| [Zenith-7B-dpo-v1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
|
| 24 |
+
| [Zenith-7B-dpo-v1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
|
| 25 |
+
| [Zenith-7B-dpo-v1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
|
| 26 |
+
| [Zenith-7B-dpo-v1.Q4_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q4_0.gguf) | Q4_0 | 3.83GB |
|
| 27 |
+
| [Zenith-7B-dpo-v1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
|
| 28 |
+
| [Zenith-7B-dpo-v1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
|
| 29 |
+
| [Zenith-7B-dpo-v1.Q4_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q4_K.gguf) | Q4_K | 4.07GB |
|
| 30 |
+
| [Zenith-7B-dpo-v1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
|
| 31 |
+
| [Zenith-7B-dpo-v1.Q4_1.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q4_1.gguf) | Q4_1 | 4.24GB |
|
| 32 |
+
| [Zenith-7B-dpo-v1.Q5_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q5_0.gguf) | Q5_0 | 4.65GB |
|
| 33 |
+
| [Zenith-7B-dpo-v1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
|
| 34 |
+
| [Zenith-7B-dpo-v1.Q5_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q5_K.gguf) | Q5_K | 4.78GB |
|
| 35 |
+
| [Zenith-7B-dpo-v1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
|
| 36 |
+
| [Zenith-7B-dpo-v1.Q5_1.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q5_1.gguf) | Q5_1 | 5.07GB |
|
| 37 |
+
| [Zenith-7B-dpo-v1.Q6_K.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q6_K.gguf) | Q6_K | 5.53GB |
|
| 38 |
+
| [Zenith-7B-dpo-v1.Q8_0.gguf](https://huggingface.co/RichardErkhov/Xenon1_-_Zenith-7B-dpo-v1-gguf/blob/main/Zenith-7B-dpo-v1.Q8_0.gguf) | Q8_0 | 7.17GB |
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
Original model description:
|
| 44 |
+
---
|
| 45 |
+
language:
|
| 46 |
+
- en
|
| 47 |
+
license: apache-2.0
|
| 48 |
+
tags:
|
| 49 |
+
- mistral
|
| 50 |
+
- Zenith-7B-dpo-v1
|
| 51 |
+
pipeline_tag: text-generation
|
| 52 |
+
---
|
| 53 |
+
# Model Card for Zenith-7B-dpo-v1
|
| 54 |
+
|
| 55 |
+
Mistral-7B-v0.1 model fine-tuned on the Ultrafeedback dataset using techinques shown in the paper [Self-Rewarding Language Models](https://arxiv.org/abs/2401.10020).
|
| 56 |
+
|
| 57 |
+
## Instruction format
|
| 58 |
+
|
| 59 |
+
In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
|
| 60 |
+
|
| 61 |
+
E.g.
|
| 62 |
+
```
|
| 63 |
+
text = "<s>[INST] What is your favourite condiment? [/INST]"
|
| 64 |
+
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
|
| 65 |
+
"[INST] Do you have mayonnaise recipes? [/INST]"
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 72 |
+
|
| 73 |
+
device = "cuda" # the device to load the model onto
|
| 74 |
+
|
| 75 |
+
model = AutoModelForCausalLM.from_pretrained("Xenon1/Zenith-7B-dpo-v1")
|
| 76 |
+
tokenizer = AutoTokenizer.from_pretrained("Xenon1/Zenith-7B-dpo-v1")
|
| 77 |
+
|
| 78 |
+
messages = [
|
| 79 |
+
{"role": "user", "content": "What is your favourite condiment?"},
|
| 80 |
+
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
| 81 |
+
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
| 85 |
+
|
| 86 |
+
model_inputs = encodeds.to(device)
|
| 87 |
+
model.to(device)
|
| 88 |
+
|
| 89 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
| 90 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
| 91 |
+
print(decoded[0])
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
## Model Architecture
|
| 95 |
+
This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
|
| 96 |
+
- Grouped-Query Attention
|
| 97 |
+
- Sliding-Window Attention
|
| 98 |
+
- Byte-fallback BPE tokenizer
|
| 99 |
+
|