Commit
·
6549220
1
Parent(s):
aa6806f
add model
Browse files- config.json +4 -2
- modeling_tsp.py +76 -49
- pytorch_model.bin +2 -2
config.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
{
|
| 2 |
"architectures": [
|
| 3 |
-
"
|
| 4 |
],
|
| 5 |
"auto_map": {
|
| 6 |
"AutoConfig": "configuration_tsp.TSPConfig",
|
|
@@ -11,6 +11,7 @@
|
|
| 11 |
"AutoModelForTokenClassification": "modeling_tsp.TSPModelForTokenClassification"
|
| 12 |
},
|
| 13 |
"dropout_prob": 0.1,
|
|
|
|
| 14 |
"embedding_size": 128,
|
| 15 |
"hidden_size": 256,
|
| 16 |
"intermediate_size": 1024,
|
|
@@ -21,6 +22,7 @@
|
|
| 21 |
"pad_token_id": 0,
|
| 22 |
"position_embedding_type": "absolute",
|
| 23 |
"torch_dtype": "float32",
|
| 24 |
-
"transformers_version": "4.
|
|
|
|
| 25 |
"vocab_size": 30522
|
| 26 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"architectures": [
|
| 3 |
+
"TSPModelForPreTraining"
|
| 4 |
],
|
| 5 |
"auto_map": {
|
| 6 |
"AutoConfig": "configuration_tsp.TSPConfig",
|
|
|
|
| 11 |
"AutoModelForTokenClassification": "modeling_tsp.TSPModelForTokenClassification"
|
| 12 |
},
|
| 13 |
"dropout_prob": 0.1,
|
| 14 |
+
"electra_generator_size_divisor": 4,
|
| 15 |
"embedding_size": 128,
|
| 16 |
"hidden_size": 256,
|
| 17 |
"intermediate_size": 1024,
|
|
|
|
| 22 |
"pad_token_id": 0,
|
| 23 |
"position_embedding_type": "absolute",
|
| 24 |
"torch_dtype": "float32",
|
| 25 |
+
"transformers_version": "4.19.0.dev0",
|
| 26 |
+
"use_electra": true,
|
| 27 |
"vocab_size": 30522
|
| 28 |
}
|
modeling_tsp.py
CHANGED
|
@@ -9,12 +9,12 @@ import torch
|
|
| 9 |
from torch import nn
|
| 10 |
import torch.nn.functional as F
|
| 11 |
from transformers import PreTrainedModel
|
| 12 |
-
from
|
| 13 |
|
| 14 |
|
| 15 |
class TSPPreTrainedModel(PreTrainedModel):
|
| 16 |
config_class = TSPConfig
|
| 17 |
-
base_model_prefix = "
|
| 18 |
|
| 19 |
def _init_weights(self, module):
|
| 20 |
"""Initialize the weights"""
|
|
@@ -32,20 +32,21 @@ class TSPPreTrainedModel(PreTrainedModel):
|
|
| 32 |
module.bias.data.zero_()
|
| 33 |
module.weight.data.fill_(1.0)
|
| 34 |
|
|
|
|
| 35 |
# ====================================
|
| 36 |
# Pretraining Model
|
| 37 |
# ====================================
|
| 38 |
|
| 39 |
|
| 40 |
-
class
|
| 41 |
-
def __init__(self, config
|
| 42 |
super().__init__(config)
|
| 43 |
self.backbone = TSPModel(config)
|
| 44 |
-
if use_electra:
|
| 45 |
mlm_config = deepcopy(config)
|
| 46 |
-
mlm_config.hidden_size
|
| 47 |
-
mlm_config.intermediate_size
|
| 48 |
-
mlm_config.num_attention_heads
|
| 49 |
self.mlm_backbone = TSPModel(mlm_config)
|
| 50 |
self.mlm_head = MaskedLMHead(
|
| 51 |
mlm_config, word_embeddings=self.mlm_backbone.embeddings.word_embeddings
|
|
@@ -55,7 +56,10 @@ class TSPModelForPretraining(TSPPreTrainedModel):
|
|
| 55 |
self.rtd_head = ReplacedTokenDiscriminationHead(config)
|
| 56 |
else:
|
| 57 |
self.mlm_backbone = self.backbone
|
| 58 |
-
self.mlm_head = MaskedLMHead(
|
|
|
|
|
|
|
|
|
|
| 59 |
self.apply(self._init_weights)
|
| 60 |
|
| 61 |
def forward(self, *args, **kwargs):
|
|
@@ -63,40 +67,6 @@ class TSPModelForPretraining(TSPPreTrainedModel):
|
|
| 63 |
"Refer to the implementation of text structrue prediction task for how to use the model."
|
| 64 |
)
|
| 65 |
|
| 66 |
-
def mlm_forward(
|
| 67 |
-
self,
|
| 68 |
-
corrupted_ids, # <int>(B,L), partially masked/replaced input token ids
|
| 69 |
-
attention_mask, # <int>(B,L), 1 / 0 for tokens that are not attended/ attended
|
| 70 |
-
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
|
| 71 |
-
mlm_selected=None, # <bool>(B,L), True at mlm selected positiosns. Calculate logits at mlm selected positions if not None.
|
| 72 |
-
):
|
| 73 |
-
hidden_states = self.mlm_backbone(
|
| 74 |
-
input_ids=corrupted_ids,
|
| 75 |
-
attention_mask=attention_mask,
|
| 76 |
-
token_type_ids=token_type_ids,
|
| 77 |
-
) # (B,L,D)
|
| 78 |
-
return self.mlm_head(
|
| 79 |
-
hidden_states, is_selected=mlm_selected
|
| 80 |
-
) # (#mlm selected, vocab size)/ (B,L,vocab size)
|
| 81 |
-
|
| 82 |
-
def rtd_forward(
|
| 83 |
-
self,
|
| 84 |
-
corrupted_ids, # <int>(B,L), partially replaced input token ids
|
| 85 |
-
attention_mask, # <int>(B,L), 1 / 0 for tokens that are not attended/ attended
|
| 86 |
-
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
|
| 87 |
-
):
|
| 88 |
-
hidden_states = self.rtd_backbone(
|
| 89 |
-
input_ids=corrupted_ids,
|
| 90 |
-
attention_mask=attention_mask,
|
| 91 |
-
token_type_ids=token_type_ids,
|
| 92 |
-
) # (B,L,D)
|
| 93 |
-
return self.rtd_backbone(hidden_states) # (B,L)
|
| 94 |
-
|
| 95 |
-
def tsp_forward(
|
| 96 |
-
self, hidden_states, # (B,L,D)
|
| 97 |
-
):
|
| 98 |
-
raise NotImplementedError
|
| 99 |
-
|
| 100 |
|
| 101 |
class MaskedLMHead(nn.Module):
|
| 102 |
def __init__(self, config, word_embeddings=None):
|
|
@@ -135,6 +105,22 @@ class ReplacedTokenDiscriminationHead(nn.Module):
|
|
| 135 |
return x.squeeze(-1) # (B,L)
|
| 136 |
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
# ====================================
|
| 139 |
# Finetuning Model
|
| 140 |
# ====================================
|
|
@@ -164,8 +150,8 @@ class TSPModelForTokenClassification(TSPPreTrainedModel):
|
|
| 164 |
class TokenClassificationHead(nn.Module):
|
| 165 |
def __init__(self, config, num_classes):
|
| 166 |
super().__init__()
|
| 167 |
-
self.dropout = nn.Dropout(
|
| 168 |
-
self.classifier = nn.Linear(
|
| 169 |
|
| 170 |
def forward(self, x): # (B,L,D)
|
| 171 |
x = self.dropout(x) # (B,L,D)
|
|
@@ -213,6 +199,7 @@ class TSPModelForQuestionAnswering(TSPPreTrainedModel):
|
|
| 213 |
super().__init__()
|
| 214 |
self.backbone = TSPModel(config)
|
| 215 |
self.head = SequenceClassififcationHead(config, num_classes)
|
|
|
|
| 216 |
|
| 217 |
def forward(
|
| 218 |
self,
|
|
@@ -345,9 +332,6 @@ class SquadHead(nn.Module):
|
|
| 345 |
|
| 346 |
|
| 347 |
class TSPModel(TSPPreTrainedModel):
|
| 348 |
-
config_class = TSPConfig
|
| 349 |
-
base_model_prefix = "tsp"
|
| 350 |
-
|
| 351 |
def __init__(self, config):
|
| 352 |
super().__init__(config)
|
| 353 |
self.embeddings = Embeddings(config)
|
|
@@ -405,9 +389,9 @@ class Embeddings(nn.Module):
|
|
| 405 |
):
|
| 406 |
B, L = input_ids.shape
|
| 407 |
embeddings = self.word_embeddings(input_ids) # (B,L,E)
|
|
|
|
| 408 |
if hasattr(self, "position_embeddings"):
|
| 409 |
embeddings += self.position_embeddings.weight[None, :L, :]
|
| 410 |
-
embeddings += self.token_type_embeddings(token_type_ids)
|
| 411 |
embeddings = self.norm(embeddings) # (B,L,E)
|
| 412 |
embeddings = self.dropout(embeddings) # (B,L,E)
|
| 413 |
return embeddings # (B,L,E)
|
|
@@ -453,6 +437,8 @@ class MultiHeadSelfAttention(nn.Module):
|
|
| 453 |
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
| 454 |
self.H = config.num_attention_heads
|
| 455 |
self.d = config.hidden_size // self.H
|
|
|
|
|
|
|
| 456 |
|
| 457 |
def forward(
|
| 458 |
self,
|
|
@@ -463,6 +449,8 @@ class MultiHeadSelfAttention(nn.Module):
|
|
| 463 |
query, key, value = (
|
| 464 |
self.mix_proj(x).view(B, L, H, 3 * d).transpose(1, 2).split(d, dim=-1)
|
| 465 |
) # (B,H,L,d),(B,H,L,d),(B,H,L,d)
|
|
|
|
|
|
|
| 466 |
output = self.attention(query, key, value, attention_mask) # (B,H,L,d)
|
| 467 |
output = self.o_proj(output.transpose(1, 2).reshape(B, L, D)) # (B,L,D)
|
| 468 |
return output # (B,L,D)
|
|
@@ -503,4 +491,43 @@ class FeedForwardNetwork(nn.Module):
|
|
| 503 |
return x # (B,L,D)
|
| 504 |
|
| 505 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from torch import nn
|
| 10 |
import torch.nn.functional as F
|
| 11 |
from transformers import PreTrainedModel
|
| 12 |
+
from configuration_tsp import TSPConfig
|
| 13 |
|
| 14 |
|
| 15 |
class TSPPreTrainedModel(PreTrainedModel):
|
| 16 |
config_class = TSPConfig
|
| 17 |
+
base_model_prefix = "backbone"
|
| 18 |
|
| 19 |
def _init_weights(self, module):
|
| 20 |
"""Initialize the weights"""
|
|
|
|
| 32 |
module.bias.data.zero_()
|
| 33 |
module.weight.data.fill_(1.0)
|
| 34 |
|
| 35 |
+
|
| 36 |
# ====================================
|
| 37 |
# Pretraining Model
|
| 38 |
# ====================================
|
| 39 |
|
| 40 |
|
| 41 |
+
class TSPModelForPreTraining(TSPPreTrainedModel):
|
| 42 |
+
def __init__(self, config):
|
| 43 |
super().__init__(config)
|
| 44 |
self.backbone = TSPModel(config)
|
| 45 |
+
if config.use_electra:
|
| 46 |
mlm_config = deepcopy(config)
|
| 47 |
+
mlm_config.hidden_size //= config.electra_generator_size_divisor
|
| 48 |
+
mlm_config.intermediate_size //= config.electra_generator_size_divisor
|
| 49 |
+
mlm_config.num_attention_heads //= config.electra_generator_size_divisor
|
| 50 |
self.mlm_backbone = TSPModel(mlm_config)
|
| 51 |
self.mlm_head = MaskedLMHead(
|
| 52 |
mlm_config, word_embeddings=self.mlm_backbone.embeddings.word_embeddings
|
|
|
|
| 56 |
self.rtd_head = ReplacedTokenDiscriminationHead(config)
|
| 57 |
else:
|
| 58 |
self.mlm_backbone = self.backbone
|
| 59 |
+
self.mlm_head = MaskedLMHead(
|
| 60 |
+
config, word_embeddings=self.mlm_backbone.embeddings.word_embeddings
|
| 61 |
+
)
|
| 62 |
+
self.tsp_head = TextStructurePredictionHead(config)
|
| 63 |
self.apply(self._init_weights)
|
| 64 |
|
| 65 |
def forward(self, *args, **kwargs):
|
|
|
|
| 67 |
"Refer to the implementation of text structrue prediction task for how to use the model."
|
| 68 |
)
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
class MaskedLMHead(nn.Module):
|
| 72 |
def __init__(self, config, word_embeddings=None):
|
|
|
|
| 105 |
return x.squeeze(-1) # (B,L)
|
| 106 |
|
| 107 |
|
| 108 |
+
class TextStructurePredictionHead(nn.Module):
|
| 109 |
+
def __init__(self, config):
|
| 110 |
+
super().__init__()
|
| 111 |
+
self.linear1 = nn.Linear(config.hidden_size * 2, config.hidden_size * 2)
|
| 112 |
+
self.norm = nn.LayerNorm(config.hidden_size * 2)
|
| 113 |
+
self.linear2 = nn.Linear(config.hidden_size * 2, 6)
|
| 114 |
+
|
| 115 |
+
def forward(
|
| 116 |
+
self, x, # (...,2D)
|
| 117 |
+
):
|
| 118 |
+
x = self.linear1(x) # (...,2D)
|
| 119 |
+
x = F.gelu(x) # (...,2D)
|
| 120 |
+
x = self.norm(x) # (...,2D)
|
| 121 |
+
return self.linear2(x) # (...,C)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
# ====================================
|
| 125 |
# Finetuning Model
|
| 126 |
# ====================================
|
|
|
|
| 150 |
class TokenClassificationHead(nn.Module):
|
| 151 |
def __init__(self, config, num_classes):
|
| 152 |
super().__init__()
|
| 153 |
+
self.dropout = nn.Dropout(config.dropout_prob)
|
| 154 |
+
self.classifier = nn.Linear(config.hidden_size, num_classes)
|
| 155 |
|
| 156 |
def forward(self, x): # (B,L,D)
|
| 157 |
x = self.dropout(x) # (B,L,D)
|
|
|
|
| 199 |
super().__init__()
|
| 200 |
self.backbone = TSPModel(config)
|
| 201 |
self.head = SequenceClassififcationHead(config, num_classes)
|
| 202 |
+
self.apply(self._init_weights)
|
| 203 |
|
| 204 |
def forward(
|
| 205 |
self,
|
|
|
|
| 332 |
|
| 333 |
|
| 334 |
class TSPModel(TSPPreTrainedModel):
|
|
|
|
|
|
|
|
|
|
| 335 |
def __init__(self, config):
|
| 336 |
super().__init__(config)
|
| 337 |
self.embeddings = Embeddings(config)
|
|
|
|
| 389 |
):
|
| 390 |
B, L = input_ids.shape
|
| 391 |
embeddings = self.word_embeddings(input_ids) # (B,L,E)
|
| 392 |
+
embeddings += self.token_type_embeddings(token_type_ids)
|
| 393 |
if hasattr(self, "position_embeddings"):
|
| 394 |
embeddings += self.position_embeddings.weight[None, :L, :]
|
|
|
|
| 395 |
embeddings = self.norm(embeddings) # (B,L,E)
|
| 396 |
embeddings = self.dropout(embeddings) # (B,L,E)
|
| 397 |
return embeddings # (B,L,E)
|
|
|
|
| 437 |
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
| 438 |
self.H = config.num_attention_heads
|
| 439 |
self.d = config.hidden_size // self.H
|
| 440 |
+
if config.position_embedding_type == "rotary":
|
| 441 |
+
self.rotray_position_embeds = RotaryEmbedding(self.d)
|
| 442 |
|
| 443 |
def forward(
|
| 444 |
self,
|
|
|
|
| 449 |
query, key, value = (
|
| 450 |
self.mix_proj(x).view(B, L, H, 3 * d).transpose(1, 2).split(d, dim=-1)
|
| 451 |
) # (B,H,L,d),(B,H,L,d),(B,H,L,d)
|
| 452 |
+
if hasattr(self, "rotray_position_embeds"):
|
| 453 |
+
query, key = self.rotray_position_embeds(query, key)
|
| 454 |
output = self.attention(query, key, value, attention_mask) # (B,H,L,d)
|
| 455 |
output = self.o_proj(output.transpose(1, 2).reshape(B, L, D)) # (B,L,D)
|
| 456 |
return output # (B,L,D)
|
|
|
|
| 491 |
return x # (B,L,D)
|
| 492 |
|
| 493 |
|
| 494 |
+
class RotaryEmbedding(nn.Module):
|
| 495 |
+
seq_len_cached = 0
|
| 496 |
+
cos_cached = None
|
| 497 |
+
sin_cached = None
|
| 498 |
+
|
| 499 |
+
def __init__(self, dim):
|
| 500 |
+
super().__init__()
|
| 501 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
| 502 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 503 |
+
|
| 504 |
+
def _forward(self, x): # (B,H,L,d)
|
| 505 |
+
# Get rotary embeddings on the fly
|
| 506 |
+
## create
|
| 507 |
+
seq_len = x.shape[2]
|
| 508 |
+
if seq_len > RotaryEmbedding.seq_len_cached:
|
| 509 |
+
RotaryEmbedding.seq_len_cached = seq_len
|
| 510 |
+
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
|
| 511 |
+
freqs = t.view(-1, 1) @ self.inv_freq.view(1, -1)
|
| 512 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) # (L,d)
|
| 513 |
+
RotaryEmbedding.cos_cached = emb.cos()[None, None, :, :]
|
| 514 |
+
RotaryEmbedding.sin_cached = emb.sin()[None, None, :, :]
|
| 515 |
+
## take
|
| 516 |
+
if seq_len == RotaryEmbedding.seq_len_cached:
|
| 517 |
+
cos, sin = RotaryEmbedding.cos_cached, RotaryEmbedding.sin_cached
|
| 518 |
+
else:
|
| 519 |
+
cos, sin = (
|
| 520 |
+
RotaryEmbedding.cos_cached[:, :, :seq_len, :], # (1,1,L,d)
|
| 521 |
+
RotaryEmbedding.sin_cached[:, :, :seq_len, :], # (1,1,L,d)
|
| 522 |
+
)
|
| 523 |
+
|
| 524 |
+
# Apply rotary embeddings
|
| 525 |
+
sections = [x.shape[-1] // 2, x.shape[-1] - x.shape[-1] // 2]
|
| 526 |
+
x1, x2 = x.split(sections, dim=-1)
|
| 527 |
+
half_rotated_x = torch.cat((-x2, x1), dim=-1)
|
| 528 |
+
return (x * cos) + (half_rotated_x * sin)
|
| 529 |
|
| 530 |
+
def forward(
|
| 531 |
+
self, query, key, # (B,H,L,d) # (B,H,L,d)
|
| 532 |
+
):
|
| 533 |
+
return self._forward(query), self._forward(key)
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c8decb4de84befc5103d4b4b7c9ed0d61fc598ad859c30163e92107f76ea731
|
| 3 |
+
size 57777425
|