SFTJBD commited on
Commit
499c5fa
·
verified ·
1 Parent(s): becab85

Upload model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - model-protection
5
+ - intellectual-property
6
+ - image-classification
7
+ - oxford-pets
8
+ - modellock
9
+ datasets:
10
+ - oxford-iiit-pet
11
+ pipeline_tag: image-classification
12
+ ---
13
+
14
+ # ModelLock: Locking Your Model With a Spell
15
+
16
+ Official model repository for the paper: [ModelLock: Locking Your Model With a Spell](https://arxiv.org/abs/2405.16285)
17
+
18
+ ## Overview
19
+
20
+ This repository contains the locked model checkpoint for the Oxford-IIIT Pet dataset using the ModelLock framework with style-based transformation.
21
+
22
+ ## Checkpoint Information
23
+
24
+ **Model**: MAE (Masked Autoencoder) fine-tuned on Oxford-IIIT Pet dataset
25
+ **Lock Type**: Style transformation
26
+ **Dataset**: Oxford-IIIT Pet (38 classes)
27
+
28
+ ## Model Hyperparameters
29
+
30
+ The model was locked using the following configuration:
31
+
32
+ ### Diffusion Model
33
+ - **Model**: `timbrooks/instruct-pix2pix` (InstructPix2Pix)
34
+
35
+ ### Transformation Parameters
36
+ - **Prompt**: `"with oil pastel"`
37
+ - **Alpha** (blending ratio): `0.5`
38
+ - **Inference Steps**: `5`
39
+ - **Image Guidance Scale**: `1.5`
40
+ - **Guidance Scale**: `4.5`
41
+
42
+ ## Download Checkpoint
43
+
44
+ ```bash
45
+ huggingface-cli download SFTJBD/ModelLock pets_mae_style_checkpoint-best.pth --local-dir ./checkpoints
46
+ ```
47
+
48
+ Or using Python:
49
+ ```python
50
+ from huggingface_hub import hf_hub_download
51
+ checkpoint_path = hf_hub_download(
52
+ repo_id="SFTJBD/ModelLock",
53
+ filename="pets_mae_style_checkpoint-best.pth"
54
+ )
55
+ ```
56
+
57
+ ## Usage
58
+
59
+ To evaluate the locked model, use the key prompt `"with oil pastel"` with the same hyperparameters listed above to unlock the model's full performance.
60
+
61
+ ## Citation
62
+
63
+ ```bibtex
64
+ @article{gao2024modellock,
65
+ title={ModelLock: Locking Your Model With a Spell},
66
+ author={Gao, Yifeng and Sun, Yuhua and Ma, Xingjun and Wu, Zuxuan and Jiang, Yu-Gang},
67
+ journal={arXiv preprint arXiv:2405.16285},
68
+ year={2024}
69
+ }
70
+ ```
71
+
72
+ ## License
73
+
74
+ MIT License
75
+