--- license: mit tags: - model-protection - intellectual-property - image-classification - oxford-pets - modellock datasets: - oxford-iiit-pet pipeline_tag: image-classification --- # ModelLock: Locking Your Model With a Spell Official model repository for the paper: [ModelLock: Locking Your Model With a Spell](https://arxiv.org/abs/2405.16285) ## Overview This repository contains the locked model checkpoint for the Oxford-IIIT Pet dataset using the ModelLock framework with style-based transformation. ## Checkpoint Information **Model**: MAE (Masked Autoencoder) fine-tuned on Oxford-IIIT Pet dataset **Lock Type**: Style lock **Dataset**: Oxford-IIIT Pet (38 classes) ## Model Hyperparameters The model was locked using the following configuration: ### Diffusion Model - **Model**: `timbrooks/instruct-pix2pix` (InstructPix2Pix) ### Transformation Parameters - **Prompt**: `"with oil pastel"` - **Alpha** (blending ratio): `0.5` - **Inference Steps**: `5` - **Image Guidance Scale**: `1.5` - **Guidance Scale**: `4.5` ## Download Checkpoint ```bash huggingface-cli download SFTJBD/ModelLock pets_mae_style_checkpoint-best.pth --local-dir ./checkpoints ``` Or using Python: ```python from huggingface_hub import hf_hub_download checkpoint_path = hf_hub_download( repo_id="SFTJBD/ModelLock", filename="pets_mae_style_checkpoint-best.pth" ) ``` ## Usage To evaluate the locked model, use the key prompt `"with oil pastel"` with the same hyperparameters listed above to unlock the model's full performance. ## Citation ```bibtex @article{gao2024modellock, title={ModelLock: Locking Your Model With a Spell}, author={Gao, Yifeng and Sun, Yuhua and Ma, Xingjun and Wu, Zuxuan and Jiang, Yu-Gang}, journal={arXiv preprint arXiv:2405.16285}, year={2024} } ``` ## License MIT License