---
license: apache-2.0
pipeline_tag: image-classification
---
# RegNet
## **Use case** : `Image classification`
# Model description
RegNet introduces a **design space paradigm** for neural networks. Rather than designing individual architectures, RegNet defines a design space of possible networks characterized by a few parameters, enabling systematic exploration of network designs.
The architecture uses **quantized linear parameterization** where networks are defined by simple equations, with systematic variation of **width and depth patterns**. RegNet employs **group convolutions** for efficiency, following a **design space exploration** methodology for finding optimal configurations.
RegNet is well-suited for research on neural network design principles, applications requiring systematic architecture selection, and scalable deployments with consistent design principles.
(source: https://arxiv.org/abs/2003.13678)
The model is quantized to **int8** using **ONNX Runtime** and exported for efficient deployment.
## Network information
| Network Information | Value |
|--------------------|-------|
| Framework | Torch |
| MParams | ~2.55 M |
| Quantization | Int8 |
| Provenance | https://github.com/facebookresearch/pycls |
| Paper | https://arxiv.org/abs/2003.13678 |
## Network inputs / outputs
For an image resolution of NxM and P classes
| Input Shape | Description |
| ----- | ----------- |
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
| Output Shape | Description |
| ----- | ----------- |
| (1, P) | Per-class confidence for P classes in FLOAT32|
## Recommended platforms
| Platform | Supported | Recommended |
|----------|-----------|-----------|
| STM32L0 |[]|[]|
| STM32L4 |[]|[]|
| STM32U5 |[]|[]|
| STM32H7 |[]|[]|
| STM32MP1 |[]|[]|
| STM32MP2 |[]|[]|
| STM32N6 |[x]|[x]|
# Performances
## Metrics
- Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option.
- All the models are trained from scratch on Imagenet dataset
### Reference **NPU** memory footprint on Imagenet dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STEdgeAI Core version |
|------|---------|--------|------------|--------|--------------|--------------|---------------|----------------------|
| [regnetx002_pt_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/regnet_pt/Public_pretrainedmodel_public_dataset/Imagenet/regnetx002_pt_224/regnetx002_pt_224_qdq_int8.onnx) | Imagenet | Int8 | 224×224×3 | STM32N6 | 1192.84 | 0 | 2606.72 | 3.0.0 |
### Reference **NPU** inference time on Imagenet dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version |
|--------|----------|--------|-------------|------------------|------------------|---------------------|-----------|-------------------------|
| [regnetx002_pt_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/regnet_pt/Public_pretrainedmodel_public_dataset/Imagenet/regnetx002_pt_224/regnetx002_pt_224_qdq_int8.onnx) | Imagenet | Int8 | 224×224×3 | STM32N6570-DK | NPU/MCU | 9.96 | 100.40 | 3.0.0 |
### Accuracy with Imagenet dataset
| Model | Format | Resolution | Top 1 Accuracy |
| --- | --- | --- | --- |
| [regnetx002_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/regnet_pt/Public_pretrainedmodel_public_dataset/Imagenet/regnetx002_pt_224/regnetx002_pt_224.onnx) | Float | 224x224x3 | 70.72 % |
| [regnetx002_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/regnet_pt/Public_pretrainedmodel_public_dataset/Imagenet/regnetx002_pt_224/regnetx002_pt_224_qdq_int8.onnx) | Int8 | 224x224x3 | 68.95 % |
Dataset details: [link](https://www.image-net.org)
Number of classes: 1000.
To perform the quantization, we calibrated the activations with a random subset of the training set.
For the sake of simplicity, the accuracy reported here was estimated on the 50000 labelled images of the validation set.
| Model | Format | Resolution | Top 1 Accuracy |
| --- | --- | --- | --- |
| [regnetx002_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/regnet_pt/Public_pretrainedmodel_public_dataset/Imagenet/regnetx002_pt_224/regnetx002_pt_224.onnx) | Float | 224x224x3 | 70.72 % |
| [regnetx002_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/regnet_pt/Public_pretrainedmodel_public_dataset/Imagenet/regnetx002_pt_224/regnetx002_pt_224_qdq_int8.onnx) | Int8 | 224x224x3 | 68.95 % |
## Retraining and Integration in a simple example:
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
# References
[1] - **Dataset**: Imagenet (ILSVRC 2012) — https://www.image-net.org/
[2] - **Model**: RegNet — https://github.com/facebookresearch/pycls