--- license: apache-2.0 pipeline_tag: image-classification --- # RegNet ## **Use case** : `Image classification` # Model description RegNet introduces a **design space paradigm** for neural networks. Rather than designing individual architectures, RegNet defines a design space of possible networks characterized by a few parameters, enabling systematic exploration of network designs. The architecture uses **quantized linear parameterization** where networks are defined by simple equations, with systematic variation of **width and depth patterns**. RegNet employs **group convolutions** for efficiency, following a **design space exploration** methodology for finding optimal configurations. RegNet is well-suited for research on neural network design principles, applications requiring systematic architecture selection, and scalable deployments with consistent design principles. (source: https://arxiv.org/abs/2003.13678) The model is quantized to **int8** using **ONNX Runtime** and exported for efficient deployment. ## Network information | Network Information | Value | |--------------------|-------| | Framework | Torch | | MParams | ~2.55 M | | Quantization | Int8 | | Provenance | https://github.com/facebookresearch/pycls | | Paper | https://arxiv.org/abs/2003.13678 | ## Network inputs / outputs For an image resolution of NxM and P classes | Input Shape | Description | | ----- | ----------- | | (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 | | Output Shape | Description | | ----- | ----------- | | (1, P) | Per-class confidence for P classes in FLOAT32| ## Recommended platforms | Platform | Supported | Recommended | |----------|-----------|-----------| | STM32L0 |[]|[]| | STM32L4 |[]|[]| | STM32U5 |[]|[]| | STM32H7 |[]|[]| | STM32MP1 |[]|[]| | STM32MP2 |[]|[]| | STM32N6 |[x]|[x]| # Performances ## Metrics - Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option. - All the models are trained from scratch on Imagenet dataset ### Reference **NPU** memory footprint on Imagenet dataset (see Accuracy for details on dataset) | Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STEdgeAI Core version | |------|---------|--------|------------|--------|--------------|--------------|---------------|----------------------| | [regnetx002_pt_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/regnet_pt/Public_pretrainedmodel_public_dataset/Imagenet/regnetx002_pt_224/regnetx002_pt_224_qdq_int8.onnx) | Imagenet | Int8 | 224×224×3 | STM32N6 | 1192.84 | 0 | 2606.72 | 3.0.0 | ### Reference **NPU** inference time on Imagenet dataset (see Accuracy for details on dataset) | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version | |--------|----------|--------|-------------|------------------|------------------|---------------------|-----------|-------------------------| | [regnetx002_pt_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/regnet_pt/Public_pretrainedmodel_public_dataset/Imagenet/regnetx002_pt_224/regnetx002_pt_224_qdq_int8.onnx) | Imagenet | Int8 | 224×224×3 | STM32N6570-DK | NPU/MCU | 9.96 | 100.40 | 3.0.0 | ### Accuracy with Imagenet dataset | Model | Format | Resolution | Top 1 Accuracy | | --- | --- | --- | --- | | [regnetx002_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/regnet_pt/Public_pretrainedmodel_public_dataset/Imagenet/regnetx002_pt_224/regnetx002_pt_224.onnx) | Float | 224x224x3 | 70.72 % | | [regnetx002_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/regnet_pt/Public_pretrainedmodel_public_dataset/Imagenet/regnetx002_pt_224/regnetx002_pt_224_qdq_int8.onnx) | Int8 | 224x224x3 | 68.95 % | Dataset details: [link](https://www.image-net.org) Number of classes: 1000. To perform the quantization, we calibrated the activations with a random subset of the training set. For the sake of simplicity, the accuracy reported here was estimated on the 50000 labelled images of the validation set. | Model | Format | Resolution | Top 1 Accuracy | | --- | --- | --- | --- | | [regnetx002_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/regnet_pt/Public_pretrainedmodel_public_dataset/Imagenet/regnetx002_pt_224/regnetx002_pt_224.onnx) | Float | 224x224x3 | 70.72 % | | [regnetx002_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/regnet_pt/Public_pretrainedmodel_public_dataset/Imagenet/regnetx002_pt_224/regnetx002_pt_224_qdq_int8.onnx) | Int8 | 224x224x3 | 68.95 % | ## Retraining and Integration in a simple example: Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services) # References [1] - **Dataset**: Imagenet (ILSVRC 2012) — https://www.image-net.org/ [2] - **Model**: RegNet — https://github.com/facebookresearch/pycls