Release AI-ModelZoo-4.0.0
Browse files
README.md
CHANGED
|
@@ -14,7 +14,7 @@ pipeline_tag: image-classification
|
|
| 14 |
|
| 15 |
ResNets family is a well known architecture that uses skip connections to enable stronger gradients in much deeper networks. This variant has 50 layers.
|
| 16 |
|
| 17 |
-
The model is quantized in int8 using tensorflow lite converter.
|
| 18 |
|
| 19 |
## Network information
|
| 20 |
|
|
@@ -67,34 +67,38 @@ For an image resolution of NxM and P classes
|
|
| 67 |
- `fft` stands for "full fine-tuning", meaning that the full model weights were initialized from a transfer learning pre-trained model, and all the layers were unfrozen during the training.
|
| 68 |
|
| 69 |
|
| 70 |
-
### Reference **NPU** memory footprint on
|
| 71 |
-
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash |
|
| 72 |
-
|
| 73 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/
|
| 74 |
-
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
### Reference **NPU** inference time on
|
| 77 |
-
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec |
|
| 78 |
-
|
| 79 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/
|
| 80 |
-
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/
|
|
|
|
|
|
|
| 81 |
|
| 82 |
|
| 83 |
-
### Reference **MCU** memory footprint based on Food-101 and
|
| 84 |
|
| 85 |
-
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash |
|
| 86 |
-
|
| 87 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/
|
| 88 |
-
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/
|
| 89 |
|
| 90 |
|
| 91 |
-
### Reference **MCU** inference time based on Food-101 and
|
| 92 |
|
| 93 |
|
| 94 |
-
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) |
|
| 95 |
-
|
| 96 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/
|
| 97 |
-
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/
|
| 98 |
|
| 99 |
|
| 100 |
|
|
@@ -104,11 +108,11 @@ Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-1
|
|
| 104 |
|
| 105 |
| Model | Format | Resolution | Top 1 Accuracy |
|
| 106 |
|-------|--------|------------|----------------|
|
| 107 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/
|
| 108 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/
|
|
|
|
| 109 |
|
| 110 |
-
|
| 111 |
-
### Accuracy with ImageNet dataset
|
| 112 |
|
| 113 |
Dataset details: [link](https://www.image-net.org), Quotation[[4]](#4).
|
| 114 |
Number of classes: 1000.
|
|
@@ -117,9 +121,9 @@ For the sake of simplicity, the accuracy reported here was estimated on the 5000
|
|
| 117 |
|
| 118 |
|model | Format | Resolution | Top 1 Accuracy |
|
| 119 |
|---------|--------|------------|----------------|
|
| 120 |
-
| [ResNet50 v2 ](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/
|
| 121 |
-
| [ResNet50 v2 ](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/
|
| 122 |
-
|
| 123 |
|
| 124 |
|
| 125 |
## Retraining and Integration in a simple example:
|
|
|
|
| 14 |
|
| 15 |
ResNets family is a well known architecture that uses skip connections to enable stronger gradients in much deeper networks. This variant has 50 layers.
|
| 16 |
|
| 17 |
+
The model is quantized in int8 using tensorflow lite converter. A mixed precision version is also provided using onnx-runtime and our own quantization scripts.
|
| 18 |
|
| 19 |
## Network information
|
| 20 |
|
|
|
|
| 67 |
- `fft` stands for "full fine-tuning", meaning that the full model weights were initialized from a transfer learning pre-trained model, and all the layers were unfrozen during the training.
|
| 68 |
|
| 69 |
|
| 70 |
+
### Reference **NPU** memory footprint on food101 and imagenet dataset (see Accuracy for details on dataset)
|
| 71 |
+
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STEdgeAI Core version |
|
| 72 |
+
|----------|------------------|--------|-------------|------------------|--------------|--------------|----------------------|-------------------------|
|
| 73 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food101/resnet50v2_224_fft/resnet50v2_224_fft_int8.tflite) | food101 | Int8 | 224x224x3 | STM32N6 | 2308.06 | 3136 | 23833.67 | 3.0.0 |
|
| 74 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food101/resnet50v2_224_fft/resnet50v2_224_fft_qdq_w4_91.4%_w8_8.6%_a8_100%_acc_80.17.onnx) | food101 | Int8/Int4 | 224x224x3 | STM32N6 | 2308.06 | 2352 | 13268.39 | 3.0.0 |
|
| 75 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/imagenet/resnet50v2_224/resnet50v2_224_int8.tflite) | imagenet | Int8 | 224x224x3 | STM32N6 | 2308.06 | 3136.0 | 25633.61 | 3.0.0 |
|
| 76 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/imagenet/resnet50v2_224/resnet50v2_224_qdq_w4_35.98%_w8_64.02%_a8_100%_acc_67.45.onnx) | imagenet | Int8/Int4 | 224x224x3 | STM32N6 | 2308.06 | 2352 | 21154.53 | 3.0.0 |
|
| 77 |
|
| 78 |
+
### Reference **NPU** inference time on food101 and imagenet dataset (see Accuracy for details on dataset)
|
| 79 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version |
|
| 80 |
+
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-----------|-------------------------|
|
| 81 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food101/resnet50v2_224_fft/resnet50v2_224_fft_int8.tflite) | food101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 238.49 | 4.19 | 3.0.0 |
|
| 82 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food101/resnet50v2_224_fft/resnet50v2_224_fft_qdq_w4_91.4%_w8_8.6%_a8_100%_acc_80.17.onnx) | food101 | Int8/Int4 | 224x224x3 | STM32N6570-DK | NPU/MCU | 267.33 | 3.74 | 3.0.0 |
|
| 83 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/imagenet/resnet50v2_224/resnet50v2_224_int8.tflite) | imagenet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 243.04 | 4.11 | 3.0.0 |
|
| 84 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/imagenet/resnet50v2_224/resnet50v2_224_qdq_w4_35.98%_w8_64.02%_a8_100%_acc_67.45.onnx) | imagenet | Int8/Int4 | 224x224x3 | STM32N6570-DK | NPU/MCU | 286.06 | 3.5 | 3.0.0 |
|
| 85 |
|
| 86 |
|
| 87 |
+
### Reference **MCU** memory footprint based on Food-101 and imagenet dataset (see Accuracy for details on dataset)
|
| 88 |
|
| 89 |
+
| Model | Dataset | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STEdgeAI Core version |
|
| 90 |
+
|-----------|---------------------------------------------------------------------------------------------------------------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-----------------|-----------------------|
|
| 91 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food101/resnet50v2_224_fft/resnet50v2_224_fft_int8.tflite) | food101 | Int8 | 224x224x3 | STM32H7 | 1816.2 KiB | 14.56 KiB | 23240.96 KiB | 169.12 KiB | 1830.76 KiB | 23410.08 KiB | 3.0.0 |
|
| 92 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/imagenet/resnet50v2_224/resnet50v2_224_int8.tflite) | imagenet | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.03 KiB | 25042.47 KiB | 225.32 KiB | 2183.1 KiB | 25267.79 KiB | 3.0.0 |
|
| 93 |
|
| 94 |
|
| 95 |
+
### Reference **MCU** inference time based on Food-101 and imagenet dataset (see Accuracy for details on dataset)
|
| 96 |
|
| 97 |
|
| 98 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STEdgeAI Core version |
|
| 99 |
+
|-------------------|-----|---|------------|------------------|------------------|-----------|---------------------|-----------------------|
|
| 100 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food101/resnet50v2_224_fft/resnet50v2_224_fft_int8.tflite) | food101 | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11314.82 | 3.0.0 |
|
| 101 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/imagenet/resnet50v2_224/resnet50v2_224_int8.tflite) | imagenet | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11370.07 | 3.0.0 |
|
| 102 |
|
| 103 |
|
| 104 |
|
|
|
|
| 108 |
|
| 109 |
| Model | Format | Resolution | Top 1 Accuracy |
|
| 110 |
|-------|--------|------------|----------------|
|
| 111 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food101/resnet50v2_224_fft/resnet50v2_224_fft.keras) | Float | 224x224x3 | 82.2 % |
|
| 112 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food101/resnet50v2_224_fft/resnet50v2_224_fft_int8.tflite) | Int8 | 224x224x3 | 81.03 % |
|
| 113 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food101/resnet50v2_224_fft/resnet50v2_224_fft_qdq_w4_91.4%_w8_8.6%_a8_100%_acc_80.17.onnx) | Int8/Int4 | 224x224x3 | 80.17 % |
|
| 114 |
|
| 115 |
+
### Accuracy with imagenet dataset
|
|
|
|
| 116 |
|
| 117 |
Dataset details: [link](https://www.image-net.org), Quotation[[4]](#4).
|
| 118 |
Number of classes: 1000.
|
|
|
|
| 121 |
|
| 122 |
|model | Format | Resolution | Top 1 Accuracy |
|
| 123 |
|---------|--------|------------|----------------|
|
| 124 |
+
| [ResNet50 v2 ](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/imagenet/resnet50v2_224/resnet50v2_224.keras) | Float | 224x224x3 | 68.73 % |
|
| 125 |
+
| [ResNet50 v2 ](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/imagenet/resnet50v2_224/resnet50v2_224_int8.tflite) | Int8 | 224x224x3 | 67.99 % |
|
| 126 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/imagenet/resnet50v2_224/resnet50v2_224_qdq_w4_35.98%_w8_64.02%_a8_100%_acc_67.45.onnx) | Int8/Int4 | 224x224x3 | 67.45 % |
|
| 127 |
|
| 128 |
|
| 129 |
## Retraining and Integration in a simple example:
|