File size: 1,615 Bytes
cbf16f6
ab11180
 
 
 
 
 
 
 
 
 
 
cbf16f6
 
ab11180
cbf16f6
ab11180
 
cbf16f6
 
 
 
 
 
ab11180
 
 
 
 
cbf16f6
 
 
 
ab11180
cbf16f6
 
 
ab11180
 
cbf16f6
ab11180
cbf16f6
ab11180
cbf16f6
 
 
ab11180
 
cbf16f6
ab11180
c4b08a2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
tags:
- finance
- stock
license: cc-by-4.0
datasets:
- SelmaNajih001/EventStockPriceVariation
language:
- en
base_model:
- allenai/longformer-base-4096
pipeline_tag: text-classification
---

# Model Card for PricePredictionForTesla

This model was created by fine-tuning a base transformer model on a dataset containing summaries of Tesla stock news along with corresponding price variations. 
It is tailored specifically for predicting Tesla stock price movements after news events, providing more precise predictions than a general market model. 


## Model Details

### Model Description

- **Developed by:** Salma Najih
- **Model type:** Text-Classification
- **Language(s) (NLP):** EN
- **License:** CC-BY-4.0
- **Finetuned from model:** allenai/longformer-base-4096


## Uses

The model can be used directly to estimate price movement signals from Tesla news headlines or summaries. 

### Direct Use

Users can input news about Tesla, and the model will return a predicted price movement. 
It provides more accurate predictions for Tesla than the general news model.

### Downstream Use

The model can be integrated into trading analysis pipelines, financial dashboards, or event-driven investment strategies, specifically for Tesla stock.

## How to Get Started with the Model

```python
from transformers import pipeline

pipe = pipeline("text-classification", model="SelmaNajih001/PricePredictionForTesla")
pipe("Tesla announces new electric vehicle")
```

Here an example of output
![image/png](https://cdn-uploads.huggingface.co/production/uploads/683ef46c2695302d716db7b9/fGK0A1h39OfyETxw-2Xc3.png)