File size: 20,903 Bytes
431f8e0
 
 
 
 
205b624
431f8e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07a8413
 
431f8e0
 
 
 
 
 
 
 
 
 
 
 
 
a3bd4e3
431f8e0
 
 
 
 
 
 
 
 
a3bd4e3
431f8e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934cf7d
 
 
 
aa6df5b
934cf7d
 
 
431f8e0
 
 
 
 
 
 
 
 
391b2c1
431f8e0
 
 
 
 
 
 
302f34b
 
 
 
a63396c
 
 
431f8e0
 
 
 
 
 
 
 
 
 
 
 
 
 
9c76664
 
431f8e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8544741
c12ca9e
431f8e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
from   typing import Optional, Tuple
import torch, torch.nn as nn, torch.nn.functional as F

from transformers                          import (PreTrainedModel,GenerationMixin,AutoConfig,AutoModelForCausalLM,)
from transformers.modeling_outputs         import CausalLMOutputWithCrossAttentions
from .configuration_super_linear           import SuperLinearConfig


import numpy as np
import matplotlib.pyplot as plt
import os
import numpy as np


"-------------------------------------------------------------------------------------------------------------------"
class RevIN(nn.Module):
    def __init__(self, num_features: int, eps=1e-5, affine=True, norm_type = None, subtract_last = False):
        """
        :param num_features: the number of features or channels
        :param eps: a value added for numerical stability
        :param affine: if True, RevIN has learnable affine parameters
        """
        super(RevIN, self).__init__()
        self.num_features = num_features
        self.eps = eps
        self.affine = affine
        self.subtract_last = subtract_last
        self.norm_type = norm_type
        if self.affine:
            self._init_params()

    def forward(self, x, mode:str):
        if mode == 'norm':
            self._get_statistics(x)
            x = self._normalize(x)
        elif mode == 'denorm':
            x = self._denormalize(x)
        else: raise NotImplementedError
        return x

    def _init_params(self):
        # initialize RevIN params: (C,)
        self.affine_weight = nn.Parameter(torch.ones(self.num_features))
        self.affine_bias = nn.Parameter(torch.zeros(self.num_features))

    def _get_statistics(self, x):
        dim2reduce = tuple(range(1, x.ndim-1))

        if self.subtract_last:
            self.last = x[:,-1,:].unsqueeze(1)
        else:
            self.mean = torch.mean(x, dim=dim2reduce, keepdim=True).detach()
        self.stdev = torch.sqrt(torch.var(x, dim=dim2reduce, keepdim=True, unbiased=False) + self.eps).detach()
        if  self.norm_type == "l1":
            self.denom = torch.sum(torch.abs(x), dim=dim2reduce, keepdim=True).detach()
        elif  self.norm_type == "l2":
            self.denom = torch.sqrt(torch.sum(x**2, dim=dim2reduce, keepdim=True)).detach()

            
    def _normalize(self, x):

        if self.subtract_last:
            x = x - self.last
        else:
            x = x - self.mean
        x = x / self.stdev

        if self.norm_type in ["l1", "l2"]:
            x = x / self.denom

        if self.affine:
            x = x * self.affine_weight
            x = x + self.affine_bias
        return x

    def _denormalize(self, x):
        if self.affine:
            x = x - self.affine_bias
            x = x / (self.affine_weight + self.eps*self.eps)
        if self.norm_type in ["l1", "l2"]:
            x = x * self.denom
        x = x * self.stdev
        if self.subtract_last:
            x = x + self.last
        else:
            x = x + self.mean
        
        return x
"-------------------------------------------------------------------------------------------------------------------"
class moving_avg(nn.Module):
    """
    Moving average block to highlight the trend of time series
    """
    def __init__(self, kernel_size, stride):
        super(moving_avg, self).__init__()
        self.kernel_size = kernel_size
        self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0)
    """
    def forward(self, x):
        # padding on the both ends of time series
        front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
        end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
        x = torch.cat([front, x, end], dim=1)
        x = self.avg(x.permute(0, 2, 1))
        x = x.permute(0, 2, 1)
        return x
    """
    def forward(self, x):
        # x: [Batch, Input length]
        # padding on the both ends of time series
        front = x[:, 0:1].repeat(1, (self.kernel_size - 1) // 2)
        end = x[:, -1:].repeat(1, (self.kernel_size - 1) // 2)
        x = torch.cat([front, x, end], dim=1)
        x = self.avg(x.unsqueeze(1)).squeeze(1)
        return x


class series_decomp(nn.Module):
    """
    Series decomposition block
    """
    def __init__(self, kernel_size):
        super(series_decomp, self).__init__()
        self.moving_avg = moving_avg(kernel_size, stride=1)

    def forward(self, x):
        moving_mean = self.moving_avg(x)
        res = x - moving_mean
        return res, moving_mean    
    

class DLinear(nn.Module):
    def __init__(self, input_len, output_len, kernel_size = 25):
        super(DLinear, self).__init__()
        self.seasonal = nn.Linear(input_len, output_len)
        self.trend = nn.Linear(input_len, output_len)
        self.moving_avg = moving_avg(kernel_size, stride=1)
        self.decompsition = series_decomp(kernel_size)

    def forward(self, x):
        # x: [Batch*Input length,Channel]
        seasonal_init, trend_init = self.decompsition(x)
        seasonal_output = self.seasonal(seasonal_init)
        trend_output = self.trend(trend_init)
        x = seasonal_output + trend_output
        return x # to [Batch, Output length, Channel]    
    
class Linear(nn.Module):
    def __init__(self, input_len, output_len):
        super(Linear, self).__init__()
        self.Linear = nn.Linear(input_len, output_len)

    def forward(self, x):
        # x: [Batch*Channel, Input length]
        x = x.clone()
        x = self.Linear(x).clone()
        return x # to [Batch, Output length, Channel]   
    
class Naive(nn.Module):
    def __init__(self, input_len, output_len):
        super(Naive, self).__init__()
        self.output_len = output_len


    def forward(self, x):
        # x: [Batch*Channel, Input length]
        x =  x[:,-1].unsqueeze(1).repeat(1, self.output_len)
        return x # to [Batch, Output length, Channel]   
    
class Mean(nn.Module):
    def __init__(self, input_len, output_len):
        super(Mean, self).__init__()
        self.output_len = output_len

    def forward(self, x):
        # x: [Batch*Channel, Input length]
        x =  x.mean(dim=1).unsqueeze(1).repeat(1, self.output_len)
        return x # to [Batch, Output length, Channel]  
    

class NLinear(nn.Module):
    def __init__(self, input_len, output_len):
        super(NLinear, self).__init__()
        self.Linear = nn.Linear(input_len, output_len)

    def forward(self, x):
        # x: [Batch, Input length,Channel]
        seq_last = x[:,-1:].detach()
        x = x - seq_last
        x = self.Linear(x)
        return x+seq_last # to [Batch, Output length, Channel]   
    
 
class RLinear(nn.Module):
    def __init__(self, input_len, output_len):
        super(RLinear, self).__init__()
        self.Linear = nn.Linear(input_len, output_len)
        self.revin_layer = RevIN(num_features = None, affine=False, norm_type = None, subtract_last = False)

    def forward(self, x):
        # x: [Batch, Input length,Channel]
        x_shape = x.shape
        if len(x_shape) == 2:
            x = x.unsqueeze(-1)
        x = x.clone()
        x = self.revin_layer(x, 'norm')
        
        x = self.Linear(x.permute(0,2,1)).permute(0,2,1).clone()
        x = self.revin_layer(x, 'denorm')
        if len(x_shape) == 2:
            x = x.squeeze(-1)
        return x # to [Batch, Output length, Channel]  


"-------------------------------------------------------------------------------------------------------------------"
class SparseNoisyMoE(nn.Module):
    def __init__(self, configs, experts=None):
        super(SparseNoisyMoE, self).__init__()
        input_dim = configs.seq_len
        output_dim = configs.pred_len
        self.k = configs.top_k_experts
        self.noise_std = configs.noisy_gating_std
        self.noise_std_decay = configs.noisy_gating_std_decay
        self.experts = nn.ModuleList(experts)
        self.num_experts = len(experts)
        self.ker_len = configs.ker_len
        self.con = configs.con
        self.d_model = configs.d_model
        self.mlp_gating = configs.mlp_gating
        self.moe_temp = configs.moe_temp
        self.use_fft = configs.use_fft
        self.fft_len = configs.fft_len
        
        if self.use_fft:
            if self.mlp_gating:
                self.gating_network = nn.Sequential(
                    nn.Linear(self.fft_len//2, self.d_model),
                    nn.ReLU(),
                    nn.Linear(self.d_model, self.num_experts)
                )
            else:
                self.gating_network = nn.Linear(self.fft_len//2, self.num_experts, bias=True)
        else:
            self.gating_network = nn.Linear(input_dim, self.num_experts, bias=True)

    def get_periodogram(self, inputs, ker_len=50, con=1, n=10000):
        if inputs.dim() == 2:
            x_0 = inputs.unsqueeze(2)
        else:
            x_0 = inputs
        x_0 = x_0 - torch.mean(x_0, dim=1, keepdim=True)

        v = torch.arange(0, n) / n
        if con:
            if ker_len is None:
                ker_len = n // 4
                ker_len = min(ker_len, 50)

            x_0 = x_0.permute(0, 2, 1)
            ker = (torch.ones(1, 1, ker_len) / ker_len).to(x_0.device)
            x_c = F.conv1d(x_0, ker, padding="same")
            x_c[:, :, :ker_len // 2] = x_c[:, :, ker_len // 2:ker_len // 2 + 1]
            x_c[:, :, -ker_len // 2:] = x_c[:, :, -ker_len // 2 - 1:-ker_len // 2]
            x_0 = x_0 - x_c
            x_0 = x_0.permute(0, 2, 1)

        dft = torch.fft.fft(x_0, dim=1, n=n) / np.sqrt(n)
        dft = dft[:, :n//2, :]
        I = torch.abs(dft) ** 2

        I_sum = torch.sum(I, dim=1, keepdim=True)
        I_sum[I_sum == 0] = 1
        I = I / I_sum

        if torch.any(I_sum == 0):
            print("Zeros in the sum")
            raise ValueError

        if inputs.dim() == 2:
            I = I.squeeze(2)
            
        return I

    def forward(self, x, get_prob=False):
        if self.use_fft:
            x_0 = self.get_periodogram(x, ker_len=self.ker_len, n=self.fft_len, con=self.con)
        else:
            x_0 = x
            
        self.gate_outputs = self.gating_network(x_0)

        if not self.training:
            self.gate_outputs = self.gate_outputs / self.moe_temp
        
        noise = torch.randn_like(self.gate_outputs).to(x.device) * self.noise_std
        if self.training:
            noisy_gate_outputs = self.gate_outputs + noise
            self.topk_values, topk_indices = torch.topk(noisy_gate_outputs, self.k, dim=1)
        else:
            self.topk_values, topk_indices = torch.topk(self.gate_outputs, self.k, dim=1)

        self.topk_gates = F.softmax(self.topk_values, dim=1)
        
        batch_size = x.size(0)
        expert_outputs = torch.stack([self.experts[i](x) for i in range(self.num_experts)], dim=1)

        topk_indices_expanded = topk_indices.unsqueeze(-1).expand(-1, -1, expert_outputs.size(2))
        sparse_expert_outputs = torch.gather(expert_outputs, 1, topk_indices_expanded)

        output = torch.sum(self.topk_gates.unsqueeze(2) * sparse_expert_outputs, dim=1)

        load_balancing_loss = self.calculate_load_balancing_loss(self.gate_outputs, batch_size)
        
        if get_prob:
            expert_probs = F.softmax(self.gate_outputs, dim=1)
            return output, load_balancing_loss, expert_probs
        
        return output, load_balancing_loss

    def calculate_load_balancing_loss(self, gate_outputs, batch_size):
        gate_probs = F.softmax(gate_outputs, dim=1)
        
        assignments = torch.argmax(gate_outputs, dim=1)
        self.D = torch.zeros(self.num_experts, device=gate_outputs.device)
        for i in range(self.num_experts):
            self.D[i] = torch.sum(assignments == i).float() / batch_size
        
        P = torch.mean(gate_probs, dim=0)
        
        load_balancing_loss = torch.sum(self.D * P) * self.num_experts
        
        return load_balancing_loss


class superLinear(nn.Module):
    def __init__(self, configs):
        super(superLinear, self).__init__()

        self.configs = configs
        print("welcome super linear")
        print(configs)
        self.pred_len = configs.pred_len
        self.seq_len = configs.seq_len
        self.inf_pred_len = configs.inf_pred_len
        self.max_horizon = configs.max_horizon
        self.auto_regressive = configs.auto_regressive
        self.n_experts = configs.moe_n_experts
        self.moe = configs.moe
        
        if configs.freq_experts == "":
            self.freq_experts = None
        else:
            self.freq_experts = configs.freq_experts.split('_')

       

        self.moe_loss = None
        self.top_k_experts = configs.top_k_experts
       # self.noisy_gating = configs.noisy_gating
        self.n_experts = configs.moe_n_experts
        self.freeze_experts = configs.freeze_experts
        self.layer_type = configs.layer_type
        self.model_name = "SuperLinear"

        
        self.layer_dict = {'DLinear': DLinear, 'Linear': Linear, 'NLinear': NLinear, 'RLinear': RLinear}
        path = configs.linear_checkpoints_path + configs.linear_checkpoints_dir + "/"
        dirs = os.listdir(path)
        checkpoints_paths = [path + "/" + d + "/" + "checkpoint.pth" for d in dirs]

        if self.freq_experts == "all":
            self.freq_experts = []
            for cp in checkpoints_paths:
                if self.layer_type in cp:
                    cycle = cp.split("/")

        self.experts = {}
        if self.freq_experts is not None:
            for expert_freq in self.freq_experts:
                if expert_freq == "naive" or expert_freq == "Naive":
                    self.experts[expert_freq] = Naive(self.seq_len, self.pred_len)
                elif expert_freq == "mean" or expert_freq == "Mean":    
                    self.experts[expert_freq] = Mean(self.seq_len, self.pred_len)
                else:
                    self.experts[expert_freq] = self.layer_dict[self.layer_type](self.seq_len, self.pred_len)
                    if configs.load_linear:
                        cycle = self.map_to_cycle(expert_freq)
                        cycle_str = f'cycle_{cycle}/'
                        cycle_checkpoint_path = [cp for cp in checkpoints_paths if (cycle_str in cp and self.layer_type in cp)]
                        if len(cycle_checkpoint_path) > 0:
                            print()
                            print(cycle_str)
                            cycle_checkpoint_path = cycle_checkpoint_path[0]
                            #print(f'loading checkpoint with layer type: {self.layer_type} and cycle: {cycle_str}')
                            print(cycle_checkpoint_path)
                            self.experts[expert_freq].load_state_dict(torch.load(cycle_checkpoint_path))
                        else:
                            print(f"Checkpoint for {cycle_str} not found in {path}")
                            raise ValueError(f"Checkpoint for {cycle_str} not found in {path}")
                        if configs.freeze_experts:
                            for param in self.experts[expert_freq].parameters():
                                param.requires_grad = False
                        
            self.n_experts = len(self.experts)
        else:
            for i in range(self.n_experts):
                print(f"creating expert {i}")
                self.experts[str(i)] = self.layer_dict[self.layer_type](self.seq_len, self.pred_len)

        self.manual_moe = configs.manual_moe

        if configs.misc_moe == 1:
            self.experts["misc"] = self.layer_dict[self.layer_type](self.seq_len, self.pred_len)
            
        self.moe = SparseNoisyMoE(configs, experts=self.experts.values())
        self.dropout = nn.Dropout(configs.dropout)

    def map_to_cycle(self, freq):
        if "/" in freq:
            cycle = int(freq.split("/")[1])
        elif "h" in freq:
            cycle = 24
        elif "2h":
            cycle = 12
        elif "3h" in freq:
            cycle = 8
        elif "4h" in freq:
            cycle = 6
        elif "D" in freq:
            cycle = 7
        elif "DM" in freq:
            cycle = 30
        elif "W" in freq:
            cycle = 52
        elif "M" in freq:
            cycle = 12
        elif "min" in freq:
            cycle = 1440
        elif "5min" in freq:
            cycle = 288
        elif "10min" in freq:
            cycle = 144
        elif "15min" in freq:
            cycle = 96
        elif "30min" in freq:
            cycle = 48
        else:
            cycle = int(freq)
        return cycle


    def forward(self, x_enc, x_mark_enc=None, x_dec=None, x_mark_dec=None, mask=None, freq=[None], get_prob=False):
        if len(x_enc.shape) > 2:
            x = x_enc.permute(0, 2, 1)
            B, V, L = x.shape
        else:
            x    = x_enc
            B, L = x.shape
            V    = 1
            
        x = x.reshape(B * V, L)
        expert_probs = None
        
        if get_prob:
            out, self.moe_loss, expert_probs = self.moe(x, get_prob=True)
        else:
            out, self.moe_loss = self.moe(x)

        if self.auto_regressive and self.max_horizon < self.inf_pred_len:
            print("bitch")
            outputs = [out]
            ar_x = torch.cat([x, out], dim=1)[:, -self.seq_len:]
            for i in range(0, self.inf_pred_len, self.max_horizon):
                ar_out, _ = self.moe(ar_x)
                outputs.append(ar_out)
                ar_x = torch.cat([ar_x, ar_out], dim=1)[:, -self.seq_len:]
            out = torch.cat(outputs, dim=1)[:, :self.inf_pred_len]
            
        if len(x_enc.shape) > 2:
            out = out.reshape(B, V, out.shape[-1])
            result = out.permute(0, 2, 1)
        else:
            result =  out

        if get_prob:
            expert_probs = expert_probs.reshape(B, V, expert_probs.shape[-1])
            return result, expert_probs
        return result
    
"-------------------------------------------------------------------------------------------------------------------"
class SuperLinearForCausalLM(PreTrainedModel, GenerationMixin):
    config_class = SuperLinearConfig

    def __init__(self, config: SuperLinearConfig):
        super().__init__(config)
  

        # the backbone keeps its own Config dataclass, so build one on‑the‑fly:
        print("SuperLinearForCausalLM")
        print(config)
        backbone_cfg   = type("Cfg", (), config.to_dict())()
        self.backbone  = superLinear(backbone_cfg)

        # optional final projection: map backbone output to discrete bins
        # (delete if your model already returns logits over a vocabulary)
        self.vocab_size = getattr(config, "vocab_size", None)
        if self.vocab_size is not None:
            self.lm_head = nn.Linear(backbone_cfg.pred_len, self.vocab_size)

        self.post_init()                              # HF weight init

    # ------------------------------------------------------------------
    # Forward pass expected by AutoModelForCausalLM
    # ------------------------------------------------------------------
    def forward(self,
                inputs_embeds: torch.Tensor = None,           
                attention_mask: Optional[torch.Tensor] = None,
                past_key_values: Optional[Tuple] = None,
                use_cache: bool = True,
                labels: Optional[torch.Tensor] = None,        
                **kwargs,) -> CausalLMOutputWithCrossAttentions:


        if inputs_embeds is None:
            raise ValueError("Pass the time‑series as `inputs_embeds`")
        
        # backbone expects (B, C, L)
        x_enc = inputs_embeds
       

        # backbone returns (B, pred_len, C)
        preds = self.backbone(x_enc)
        return CausalLMOutputWithCrossAttentions(loss=None,logits=preds,past_key_values=None,hidden_states=None,attentions=None,)


    def prepare_inputs_for_generation(self, inputs_embeds, past_key_values=None, **kwargs):
        if past_key_values is not None:
            # only feed the last new step
            inputs_embeds = inputs_embeds[:, -1:, :]
        return {"inputs_embeds": inputs_embeds, "past_key_values": past_key_values}

    def _reorder_cache(self, past, beam_idx, **kwargs):
        return past  # backbone keeps no KV cache

"-------------------------------------------------------------------------------------------------------------------"
# 3) --------------------------------------------------------------------------
# REGISTRATION  (one‑liner you run **once** before .from_pretrained)
# -----------------------------------------------------------------------------


AutoConfig.register(SuperLinearConfig.model_type, SuperLinearConfig)
AutoModelForCausalLM.register(SuperLinearConfig, SuperLinearForCausalLM)