Update modeling_super_linear.py
Browse files- modeling_super_linear.py +34 -34
modeling_super_linear.py
CHANGED
|
@@ -293,40 +293,40 @@ class SparseNoisyMoE(nn.Module):
|
|
| 293 |
self.gating_network = nn.Linear(input_dim, self.num_experts, bias=True)
|
| 294 |
|
| 295 |
def get_periodogram(self, inputs, ker_len=50, con=1, n=10000):
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
|
| 331 |
|
| 332 |
def fourier_interp_dim1(self,x, target_len: int = 512):
|
|
|
|
| 293 |
self.gating_network = nn.Linear(input_dim, self.num_experts, bias=True)
|
| 294 |
|
| 295 |
def get_periodogram(self, inputs, ker_len=50, con=1, n=10000):
|
| 296 |
+
if inputs.dim() == 2:
|
| 297 |
+
x_0 = inputs.unsqueeze(2)
|
| 298 |
+
else:
|
| 299 |
+
x_0 = inputs
|
| 300 |
+
x_0 = x_0 - torch.mean(x_0, dim=1, keepdim=True)
|
| 301 |
+
|
| 302 |
+
v = torch.arange(0, n) / n
|
| 303 |
+
if con:
|
| 304 |
+
if ker_len is None:
|
| 305 |
+
ker_len = n // 4
|
| 306 |
+
ker_len = min(ker_len, 50)
|
| 307 |
+
|
| 308 |
+
x_0 = x_0.permute(0, 2, 1)
|
| 309 |
+
ker = (torch.ones(1, 1, ker_len) / ker_len).to(x_0.device)
|
| 310 |
+
x_c = F.conv1d(x_0, ker, padding="same")
|
| 311 |
+
x_c[:, :, :ker_len // 2] = x_c[:, :, ker_len // 2:ker_len // 2 + 1]
|
| 312 |
+
x_c[:, :, -ker_len // 2:] = x_c[:, :, -ker_len // 2 - 1:-ker_len // 2]
|
| 313 |
+
x_0 = x_0 - x_c
|
| 314 |
+
x_0 = x_0.permute(0, 2, 1)
|
| 315 |
+
|
| 316 |
+
dft = torch.fft.fft(x_0, dim=1, n=n) / np.sqrt(n)
|
| 317 |
+
dft = dft[:, :n//2, :]
|
| 318 |
+
I = torch.abs(dft) ** 2
|
| 319 |
+
|
| 320 |
+
I_sum = torch.sum(I, dim=1, keepdim=True)
|
| 321 |
+
I_sum[I_sum == 0] = 1
|
| 322 |
+
I = I / I_sum
|
| 323 |
+
|
| 324 |
+
if torch.any(I_sum == 0):
|
| 325 |
+
print("Zeros in the sum")
|
| 326 |
+
raise ValueError
|
| 327 |
+
|
| 328 |
+
if inputs.dim() == 2:
|
| 329 |
+
I = I.squeeze(2)
|
| 330 |
|
| 331 |
|
| 332 |
def fourier_interp_dim1(self,x, target_len: int = 512):
|