Update modeling_super_linear.py
Browse files- modeling_super_linear.py +3 -3
modeling_super_linear.py
CHANGED
|
@@ -638,14 +638,14 @@ class SuperLinearForCausalLM(PreTrainedModel, GenerationMixin):
|
|
| 638 |
|
| 639 |
if x_enc.shape[1] < 512:
|
| 640 |
x_enc = self.revin_layer(x_enc, 'norm')
|
| 641 |
-
x_enc = self.fourier_interp_dim1(x_enc)
|
| 642 |
|
| 643 |
-
self.backbone.inf_pred_len = 336
|
| 644 |
|
| 645 |
# backbone returns (B, pred_len, C)
|
| 646 |
|
| 647 |
preds = self.backbone(x_enc)
|
| 648 |
-
preds = self.fourier_downsample_dim1(preds,96)
|
| 649 |
preds = self.revin_layer(preds, 'denorm')
|
| 650 |
|
| 651 |
return CausalLMOutputWithCrossAttentions(loss=None,logits=preds,past_key_values=None,hidden_states=None,attentions=None,)
|
|
|
|
| 638 |
|
| 639 |
if x_enc.shape[1] < 512:
|
| 640 |
x_enc = self.revin_layer(x_enc, 'norm')
|
| 641 |
+
#x_enc = self.fourier_interp_dim1(x_enc)
|
| 642 |
|
| 643 |
+
#self.backbone.inf_pred_len = 336
|
| 644 |
|
| 645 |
# backbone returns (B, pred_len, C)
|
| 646 |
|
| 647 |
preds = self.backbone(x_enc)
|
| 648 |
+
#preds = self.fourier_downsample_dim1(preds,96)
|
| 649 |
preds = self.revin_layer(preds, 'denorm')
|
| 650 |
|
| 651 |
return CausalLMOutputWithCrossAttentions(loss=None,logits=preds,past_key_values=None,hidden_states=None,attentions=None,)
|