|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
CACHE_T = 2 |
|
|
|
|
|
|
|
|
class CausalConv1d(nn.Conv1d): |
|
|
""" |
|
|
Causal 1d convolusion. |
|
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
|
super().__init__(*args, **kwargs) |
|
|
self._padding = ( |
|
|
2 * self.padding[0], |
|
|
0, |
|
|
) |
|
|
self.padding = (0,) |
|
|
|
|
|
def forward(self, x, cache_x=None): |
|
|
padding = list(self._padding) |
|
|
if cache_x is not None and self._padding[0] > 0: |
|
|
cache_x = cache_x.to(x.device) |
|
|
x = torch.cat([cache_x, x], dim=2) |
|
|
padding[0] -= cache_x.shape[2] |
|
|
x = F.pad(x, padding) |
|
|
|
|
|
return super().forward(x) |
|
|
|
|
|
|
|
|
class RMS_norm(nn.Module): |
|
|
def __init__(self, dim, channel_first=True, bias=False): |
|
|
super().__init__() |
|
|
broadcastable_dims = (1,) |
|
|
shape = (dim, *broadcastable_dims) if channel_first else (dim,) |
|
|
|
|
|
self.channel_first = channel_first |
|
|
self.scale = dim**0.5 |
|
|
self.gamma = nn.Parameter(torch.ones(shape)) |
|
|
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0 |
|
|
|
|
|
def forward(self, x): |
|
|
return ( |
|
|
F.normalize(x, dim=(1 if self.channel_first else -1)) |
|
|
* self.scale |
|
|
* self.gamma |
|
|
+ self.bias |
|
|
) |
|
|
|
|
|
|
|
|
class Upsample(nn.Upsample): |
|
|
def forward(self, x): |
|
|
""" |
|
|
Fix bfloat16 support for nearest neighbor interpolation. |
|
|
""" |
|
|
return super().forward(x.float()).type_as(x) |
|
|
|
|
|
|
|
|
class Resample(nn.Module): |
|
|
def __init__(self, dim, mode): |
|
|
assert mode in ( |
|
|
"upsample1d", |
|
|
"downsample1d", |
|
|
) |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.mode = mode |
|
|
|
|
|
|
|
|
if mode == "upsample1d": |
|
|
self.time_conv = CausalConv1d(dim, dim * 2, (3,), padding=(1,)) |
|
|
elif mode == "downsample1d": |
|
|
self.time_conv = CausalConv1d(dim, dim, (3,), stride=(2,), padding=(0,)) |
|
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]): |
|
|
b, c, t = x.size() |
|
|
if self.mode == "upsample1d": |
|
|
if feat_cache is not None: |
|
|
idx = feat_idx[0] |
|
|
if feat_cache[idx] is None: |
|
|
feat_cache[idx] = "Rep" |
|
|
feat_idx[0] += 1 |
|
|
else: |
|
|
cache_x = x[:, :, -CACHE_T:].clone() |
|
|
if ( |
|
|
cache_x.shape[2] < 2 |
|
|
and feat_cache[idx] is not None |
|
|
and feat_cache[idx] != "Rep" |
|
|
): |
|
|
|
|
|
cache_x = torch.cat( |
|
|
[ |
|
|
feat_cache[idx][:, :, -1] |
|
|
.unsqueeze(2) |
|
|
.to(cache_x.device), |
|
|
cache_x, |
|
|
], |
|
|
dim=2, |
|
|
) |
|
|
if ( |
|
|
cache_x.shape[2] < 2 |
|
|
and feat_cache[idx] is not None |
|
|
and feat_cache[idx] == "Rep" |
|
|
): |
|
|
cache_x = torch.cat( |
|
|
[torch.zeros_like(cache_x).to(cache_x.device), cache_x], |
|
|
dim=2, |
|
|
) |
|
|
if feat_cache[idx] == "Rep": |
|
|
x = self.time_conv(x) |
|
|
else: |
|
|
x = self.time_conv(x, feat_cache[idx]) |
|
|
feat_cache[idx] = cache_x |
|
|
feat_idx[0] += 1 |
|
|
x = x.reshape(b, 2, c, t) |
|
|
x = torch.stack((x[:, 0, :, :], x[:, 1, :, :]), 3) |
|
|
x = x.reshape(b, c, t * 2) |
|
|
|
|
|
if self.mode == "downsample1d": |
|
|
if feat_cache is not None: |
|
|
idx = feat_idx[0] |
|
|
if feat_cache[idx] is None: |
|
|
feat_cache[idx] = x.clone() |
|
|
feat_idx[0] += 1 |
|
|
else: |
|
|
cache_x = x[:, :, -1:].clone() |
|
|
x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:], x], 2)) |
|
|
feat_cache[idx] = cache_x |
|
|
feat_idx[0] += 1 |
|
|
return x |
|
|
|
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
|
def __init__(self, in_dim, out_dim, dropout=0.0): |
|
|
super().__init__() |
|
|
self.in_dim = in_dim |
|
|
self.out_dim = out_dim |
|
|
|
|
|
|
|
|
self.residual = nn.Sequential( |
|
|
RMS_norm(in_dim), |
|
|
nn.SiLU(), |
|
|
CausalConv1d(in_dim, out_dim, 3, padding=1), |
|
|
RMS_norm(out_dim), |
|
|
nn.SiLU(), |
|
|
nn.Dropout(dropout), |
|
|
CausalConv1d(out_dim, out_dim, 3, padding=1), |
|
|
) |
|
|
self.shortcut = ( |
|
|
CausalConv1d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity() |
|
|
) |
|
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]): |
|
|
h = self.shortcut(x) |
|
|
for layer in self.residual: |
|
|
if isinstance(layer, CausalConv1d) and feat_cache is not None: |
|
|
idx = feat_idx[0] |
|
|
cache_x = x[:, :, -CACHE_T:].clone() |
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: |
|
|
|
|
|
cache_x = torch.cat( |
|
|
[ |
|
|
feat_cache[idx][:, :, -1].unsqueeze(2).to(cache_x.device), |
|
|
cache_x, |
|
|
], |
|
|
dim=2, |
|
|
) |
|
|
x = layer(x, feat_cache[idx]) |
|
|
feat_cache[idx] = cache_x |
|
|
feat_idx[0] += 1 |
|
|
else: |
|
|
x = layer(x) |
|
|
return x + h |
|
|
|
|
|
|
|
|
class AvgDown1D(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels, |
|
|
out_channels, |
|
|
factor_t, |
|
|
): |
|
|
super().__init__() |
|
|
self.in_channels = in_channels |
|
|
self.out_channels = out_channels |
|
|
self.factor_t = factor_t |
|
|
self.factor = self.factor_t |
|
|
|
|
|
assert in_channels * self.factor % out_channels == 0 |
|
|
self.group_size = in_channels * self.factor // out_channels |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
pad_t = (self.factor_t - x.shape[2] % self.factor_t) % self.factor_t |
|
|
pad = (pad_t, 0) |
|
|
x = F.pad(x, pad) |
|
|
B, C, T = x.shape |
|
|
x = x.view( |
|
|
B, |
|
|
C, |
|
|
T // self.factor_t, |
|
|
self.factor_t, |
|
|
) |
|
|
x = x.permute(0, 1, 3, 2).contiguous() |
|
|
x = x.view( |
|
|
B, |
|
|
C * self.factor, |
|
|
T // self.factor_t, |
|
|
) |
|
|
x = x.view( |
|
|
B, |
|
|
self.out_channels, |
|
|
self.group_size, |
|
|
T // self.factor_t, |
|
|
) |
|
|
x = x.mean(dim=2) |
|
|
return x |
|
|
|
|
|
|
|
|
class DupUp1D(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
factor_t, |
|
|
): |
|
|
super().__init__() |
|
|
self.in_channels = in_channels |
|
|
self.out_channels = out_channels |
|
|
|
|
|
self.factor_t = factor_t |
|
|
self.factor = self.factor_t |
|
|
|
|
|
assert out_channels * self.factor % in_channels == 0 |
|
|
self.repeats = out_channels * self.factor // in_channels |
|
|
|
|
|
def forward(self, x: torch.Tensor, first_chunk=False) -> torch.Tensor: |
|
|
x = x.repeat_interleave(self.repeats, dim=1) |
|
|
x = x.view( |
|
|
x.size(0), |
|
|
self.out_channels, |
|
|
self.factor_t, |
|
|
x.size(2), |
|
|
) |
|
|
x = x.permute(0, 1, 3, 2).contiguous() |
|
|
x = x.view( |
|
|
x.size(0), |
|
|
self.out_channels, |
|
|
x.size(2) * self.factor_t, |
|
|
) |
|
|
if first_chunk: |
|
|
x = x[ |
|
|
:, |
|
|
:, |
|
|
self.factor_t - 1 :, |
|
|
] |
|
|
return x |
|
|
|
|
|
|
|
|
class Down_ResidualBlock(nn.Module): |
|
|
def __init__(self, in_dim, out_dim, dropout, mult, temperal_downsample=False): |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
if temperal_downsample: |
|
|
self.avg_shortcut = AvgDown1D( |
|
|
in_dim, |
|
|
out_dim, |
|
|
factor_t=2, |
|
|
) |
|
|
else: |
|
|
self.avg_shortcut = None |
|
|
|
|
|
|
|
|
downsamples = [] |
|
|
for _ in range(mult): |
|
|
downsamples.append(ResidualBlock(in_dim, out_dim, dropout)) |
|
|
in_dim = out_dim |
|
|
|
|
|
|
|
|
if temperal_downsample: |
|
|
downsamples.append(Resample(out_dim, mode="downsample1d")) |
|
|
|
|
|
self.downsamples = nn.Sequential(*downsamples) |
|
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]): |
|
|
x_copy = x.clone() |
|
|
for module in self.downsamples: |
|
|
x = module(x, feat_cache, feat_idx) |
|
|
if self.avg_shortcut is None: |
|
|
return x |
|
|
else: |
|
|
return x + self.avg_shortcut(x_copy) |
|
|
|
|
|
|
|
|
class Up_ResidualBlock(nn.Module): |
|
|
def __init__(self, in_dim, out_dim, dropout, mult, temperal_upsample=False): |
|
|
super().__init__() |
|
|
|
|
|
if temperal_upsample: |
|
|
self.avg_shortcut = DupUp1D( |
|
|
in_dim, |
|
|
out_dim, |
|
|
factor_t=2, |
|
|
) |
|
|
else: |
|
|
self.avg_shortcut = None |
|
|
|
|
|
|
|
|
upsamples = [] |
|
|
for _ in range(mult): |
|
|
upsamples.append(ResidualBlock(in_dim, out_dim, dropout)) |
|
|
in_dim = out_dim |
|
|
|
|
|
|
|
|
if temperal_upsample: |
|
|
upsamples.append(Resample(out_dim, mode="upsample1d")) |
|
|
|
|
|
self.upsamples = nn.Sequential(*upsamples) |
|
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False): |
|
|
x_main = x.clone() |
|
|
for module in self.upsamples: |
|
|
x_main = module(x_main, feat_cache, feat_idx) |
|
|
if self.avg_shortcut is not None: |
|
|
x_shortcut = self.avg_shortcut(x, first_chunk) |
|
|
return x_main + x_shortcut |
|
|
else: |
|
|
return x_main |
|
|
|
|
|
|
|
|
class Encoder1d(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
input_dim, |
|
|
dim=128, |
|
|
z_dim=4, |
|
|
dim_mult=[1, 2, 4, 4], |
|
|
num_res_blocks=2, |
|
|
temperal_downsample=[True, True, False], |
|
|
dropout=0.0, |
|
|
): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.z_dim = z_dim |
|
|
self.dim_mult = dim_mult |
|
|
self.num_res_blocks = num_res_blocks |
|
|
self.temperal_downsample = temperal_downsample |
|
|
|
|
|
|
|
|
dims = [dim * u for u in [1] + dim_mult] |
|
|
scale = 1.0 |
|
|
|
|
|
|
|
|
self.conv1 = CausalConv1d(input_dim, dims[0], 3, padding=1) |
|
|
|
|
|
|
|
|
downsamples = [] |
|
|
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): |
|
|
t_down_flag = ( |
|
|
temperal_downsample[i] if i < len(temperal_downsample) else False |
|
|
) |
|
|
downsamples.append( |
|
|
Down_ResidualBlock( |
|
|
in_dim=in_dim, |
|
|
out_dim=out_dim, |
|
|
dropout=dropout, |
|
|
mult=num_res_blocks, |
|
|
temperal_downsample=t_down_flag, |
|
|
) |
|
|
) |
|
|
scale /= 2.0 |
|
|
self.downsamples = nn.Sequential(*downsamples) |
|
|
|
|
|
|
|
|
self.middle = nn.Sequential( |
|
|
ResidualBlock(out_dim, out_dim, dropout), |
|
|
RMS_norm(out_dim), |
|
|
CausalConv1d(out_dim, out_dim, 1), |
|
|
ResidualBlock(out_dim, out_dim, dropout), |
|
|
) |
|
|
|
|
|
|
|
|
self.head = nn.Sequential( |
|
|
RMS_norm(out_dim), |
|
|
nn.SiLU(), |
|
|
CausalConv1d(out_dim, z_dim, 3, padding=1), |
|
|
) |
|
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0]): |
|
|
if feat_cache is not None: |
|
|
idx = feat_idx[0] |
|
|
cache_x = x[:, :, -CACHE_T:].clone() |
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: |
|
|
cache_x = torch.cat( |
|
|
[ |
|
|
feat_cache[idx][:, :, -1].unsqueeze(2).to(cache_x.device), |
|
|
cache_x, |
|
|
], |
|
|
dim=2, |
|
|
) |
|
|
x = self.conv1(x, feat_cache[idx]) |
|
|
feat_cache[idx] = cache_x |
|
|
feat_idx[0] += 1 |
|
|
else: |
|
|
x = self.conv1(x) |
|
|
|
|
|
|
|
|
for layer in self.downsamples: |
|
|
if feat_cache is not None: |
|
|
x = layer(x, feat_cache, feat_idx) |
|
|
else: |
|
|
x = layer(x) |
|
|
|
|
|
|
|
|
for layer in self.middle: |
|
|
if isinstance(layer, ResidualBlock) and feat_cache is not None: |
|
|
x = layer(x, feat_cache, feat_idx) |
|
|
else: |
|
|
x = layer(x) |
|
|
|
|
|
|
|
|
for layer in self.head: |
|
|
if isinstance(layer, CausalConv1d) and feat_cache is not None: |
|
|
idx = feat_idx[0] |
|
|
cache_x = x[:, :, -CACHE_T:].clone() |
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: |
|
|
cache_x = torch.cat( |
|
|
[ |
|
|
feat_cache[idx][:, :, -1].unsqueeze(2).to(cache_x.device), |
|
|
cache_x, |
|
|
], |
|
|
dim=2, |
|
|
) |
|
|
x = layer(x, feat_cache[idx]) |
|
|
feat_cache[idx] = cache_x |
|
|
feat_idx[0] += 1 |
|
|
else: |
|
|
x = layer(x) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class Decoder1d(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
output_dim, |
|
|
dim=128, |
|
|
z_dim=4, |
|
|
dim_mult=[1, 2, 4, 4], |
|
|
num_res_blocks=2, |
|
|
temperal_upsample=[False, True, True], |
|
|
dropout=0.0, |
|
|
): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.z_dim = z_dim |
|
|
self.dim_mult = dim_mult |
|
|
self.num_res_blocks = num_res_blocks |
|
|
self.temperal_upsample = temperal_upsample |
|
|
|
|
|
|
|
|
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] |
|
|
scale = 1.0 / 2 ** (len(dim_mult) - 2) |
|
|
|
|
|
self.conv1 = CausalConv1d(z_dim, dims[0], 3, padding=1) |
|
|
|
|
|
|
|
|
self.middle = nn.Sequential( |
|
|
ResidualBlock(dims[0], dims[0], dropout), |
|
|
RMS_norm(dims[0]), |
|
|
CausalConv1d(dims[0], dims[0], 1), |
|
|
ResidualBlock(dims[0], dims[0], dropout), |
|
|
) |
|
|
|
|
|
|
|
|
upsamples = [] |
|
|
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): |
|
|
t_up_flag = temperal_upsample[i] if i < len(temperal_upsample) else False |
|
|
upsamples.append( |
|
|
Up_ResidualBlock( |
|
|
in_dim=in_dim, |
|
|
out_dim=out_dim, |
|
|
dropout=dropout, |
|
|
mult=num_res_blocks + 1, |
|
|
temperal_upsample=t_up_flag, |
|
|
) |
|
|
) |
|
|
self.upsamples = nn.Sequential(*upsamples) |
|
|
|
|
|
|
|
|
self.head = nn.Sequential( |
|
|
RMS_norm(out_dim), |
|
|
nn.SiLU(), |
|
|
CausalConv1d(out_dim, output_dim, 3, padding=1), |
|
|
) |
|
|
|
|
|
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False): |
|
|
if feat_cache is not None: |
|
|
idx = feat_idx[0] |
|
|
cache_x = x[:, :, -CACHE_T:].clone() |
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: |
|
|
cache_x = torch.cat( |
|
|
[ |
|
|
feat_cache[idx][:, :, -1].unsqueeze(2).to(cache_x.device), |
|
|
cache_x, |
|
|
], |
|
|
dim=2, |
|
|
) |
|
|
x = self.conv1(x, feat_cache[idx]) |
|
|
feat_cache[idx] = cache_x |
|
|
feat_idx[0] += 1 |
|
|
else: |
|
|
x = self.conv1(x) |
|
|
|
|
|
for layer in self.middle: |
|
|
if isinstance(layer, ResidualBlock) and feat_cache is not None: |
|
|
x = layer(x, feat_cache, feat_idx) |
|
|
else: |
|
|
x = layer(x) |
|
|
|
|
|
|
|
|
for layer in self.upsamples: |
|
|
if feat_cache is not None: |
|
|
x = layer(x, feat_cache, feat_idx, first_chunk) |
|
|
else: |
|
|
x = layer(x) |
|
|
|
|
|
|
|
|
for layer in self.head: |
|
|
if isinstance(layer, CausalConv1d) and feat_cache is not None: |
|
|
idx = feat_idx[0] |
|
|
cache_x = x[:, :, -CACHE_T:].clone() |
|
|
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: |
|
|
cache_x = torch.cat( |
|
|
[ |
|
|
feat_cache[idx][:, :, -1].unsqueeze(2).to(cache_x.device), |
|
|
cache_x, |
|
|
], |
|
|
dim=2, |
|
|
) |
|
|
x = layer(x, feat_cache[idx]) |
|
|
feat_cache[idx] = cache_x |
|
|
feat_idx[0] += 1 |
|
|
else: |
|
|
x = layer(x) |
|
|
return x |
|
|
|
|
|
|
|
|
def count_conv1d(model): |
|
|
count = 0 |
|
|
for m in model.modules(): |
|
|
if isinstance(m, CausalConv1d): |
|
|
count += 1 |
|
|
return count |
|
|
|
|
|
|
|
|
class WanVAE_(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
input_dim, |
|
|
dim=160, |
|
|
dec_dim=256, |
|
|
z_dim=16, |
|
|
dim_mult=[1, 2, 4, 4], |
|
|
num_res_blocks=1, |
|
|
temperal_downsample=[True, True, False], |
|
|
dropout=0.0, |
|
|
): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.z_dim = z_dim |
|
|
self.dim_mult = dim_mult |
|
|
self.num_res_blocks = num_res_blocks |
|
|
self.temperal_downsample = temperal_downsample |
|
|
self.temperal_upsample = temperal_downsample[::-1] |
|
|
|
|
|
|
|
|
self.encoder = Encoder1d( |
|
|
input_dim, |
|
|
dim, |
|
|
z_dim * 2, |
|
|
dim_mult, |
|
|
num_res_blocks, |
|
|
self.temperal_downsample, |
|
|
dropout, |
|
|
) |
|
|
self.conv1 = CausalConv1d(z_dim * 2, z_dim * 2, 1) |
|
|
self.conv2 = CausalConv1d(z_dim, z_dim, 1) |
|
|
self.decoder = Decoder1d( |
|
|
input_dim, |
|
|
dec_dim, |
|
|
z_dim, |
|
|
dim_mult, |
|
|
num_res_blocks, |
|
|
self.temperal_upsample, |
|
|
dropout, |
|
|
) |
|
|
|
|
|
def forward(self, x, scale=[0, 1]): |
|
|
mu = self.encode(x, scale) |
|
|
x_recon = self.decode(mu, scale) |
|
|
return x_recon, mu |
|
|
|
|
|
def encode(self, x, scale, return_dist=False): |
|
|
self.clear_cache() |
|
|
t = x.shape[2] |
|
|
iter_ = 1 + (t - 1) // 4 |
|
|
for i in range(iter_): |
|
|
self._enc_conv_idx = [0] |
|
|
if i == 0: |
|
|
out = self.encoder( |
|
|
x[:, :, :1], |
|
|
feat_cache=self._enc_feat_map, |
|
|
feat_idx=self._enc_conv_idx, |
|
|
) |
|
|
else: |
|
|
out_ = self.encoder( |
|
|
x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i], |
|
|
feat_cache=self._enc_feat_map, |
|
|
feat_idx=self._enc_conv_idx, |
|
|
) |
|
|
out = torch.cat([out, out_], 2) |
|
|
mu, log_var = self.conv1(out).chunk(2, dim=1) |
|
|
if isinstance(scale[0], torch.Tensor): |
|
|
mu = (mu - scale[0].view(1, self.z_dim, 1)) * scale[1].view( |
|
|
1, self.z_dim, 1 |
|
|
) |
|
|
else: |
|
|
mu = (mu - scale[0]) * scale[1] |
|
|
self.clear_cache() |
|
|
if return_dist: |
|
|
return mu, log_var |
|
|
return mu |
|
|
|
|
|
def decode(self, z, scale): |
|
|
self.clear_cache() |
|
|
if isinstance(scale[0], torch.Tensor): |
|
|
z = z / scale[1].view(1, self.z_dim, 1) + scale[0].view(1, self.z_dim, 1) |
|
|
else: |
|
|
z = z / scale[1] + scale[0] |
|
|
iter_ = z.shape[2] |
|
|
x = self.conv2(z) |
|
|
for i in range(iter_): |
|
|
self._conv_idx = [0] |
|
|
if i == 0: |
|
|
out = self.decoder( |
|
|
x[:, :, i : i + 1], |
|
|
feat_cache=self._feat_map, |
|
|
feat_idx=self._conv_idx, |
|
|
first_chunk=True, |
|
|
) |
|
|
else: |
|
|
out_ = self.decoder( |
|
|
x[:, :, i : i + 1], |
|
|
feat_cache=self._feat_map, |
|
|
feat_idx=self._conv_idx, |
|
|
) |
|
|
out = torch.cat([out, out_], 2) |
|
|
self.clear_cache() |
|
|
return out |
|
|
|
|
|
@torch.no_grad() |
|
|
def stream_encode(self, x, first_chunk, scale, return_dist=False): |
|
|
t = x.shape[2] |
|
|
if first_chunk: |
|
|
iter_ = 1 + (t - 1) // 4 |
|
|
else: |
|
|
iter_ = t // 4 |
|
|
for i in range(iter_): |
|
|
self._enc_conv_idx = [0] |
|
|
if i == 0: |
|
|
if first_chunk: |
|
|
out = self.encoder( |
|
|
x[:, :, :1], |
|
|
feat_cache=self._enc_feat_map, |
|
|
feat_idx=self._enc_conv_idx, |
|
|
) |
|
|
else: |
|
|
out = self.encoder( |
|
|
x[:, :, :4], |
|
|
feat_cache=self._enc_feat_map, |
|
|
feat_idx=self._enc_conv_idx, |
|
|
) |
|
|
else: |
|
|
if first_chunk: |
|
|
out_ = self.encoder( |
|
|
x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i], |
|
|
feat_cache=self._enc_feat_map, |
|
|
feat_idx=self._enc_conv_idx, |
|
|
) |
|
|
else: |
|
|
out_ = self.encoder( |
|
|
x[:, :, 4 * i : 4 * (i + 1)], |
|
|
feat_cache=self._enc_feat_map, |
|
|
feat_idx=self._enc_conv_idx, |
|
|
) |
|
|
out = torch.cat([out, out_], 2) |
|
|
mu, log_var = self.conv1(out).chunk(2, dim=1) |
|
|
if isinstance(scale[0], torch.Tensor): |
|
|
mu = (mu - scale[0].view(1, self.z_dim, 1)) * scale[1].view( |
|
|
1, self.z_dim, 1 |
|
|
) |
|
|
else: |
|
|
mu = (mu - scale[0]) * scale[1] |
|
|
if return_dist: |
|
|
return mu, log_var |
|
|
else: |
|
|
return mu |
|
|
|
|
|
@torch.no_grad() |
|
|
def stream_decode(self, z, first_chunk, scale): |
|
|
if isinstance(scale[0], torch.Tensor): |
|
|
z = z / scale[1].view(1, self.z_dim, 1) + scale[0].view(1, self.z_dim, 1) |
|
|
else: |
|
|
z = z / scale[1] + scale[0] |
|
|
iter_ = z.shape[2] |
|
|
x = self.conv2(z) |
|
|
for i in range(iter_): |
|
|
self._conv_idx = [0] |
|
|
if i == 0: |
|
|
out = self.decoder( |
|
|
x[:, :, i : i + 1], |
|
|
feat_cache=self._feat_map, |
|
|
feat_idx=self._conv_idx, |
|
|
first_chunk=first_chunk, |
|
|
) |
|
|
else: |
|
|
out_ = self.decoder( |
|
|
x[:, :, i : i + 1], |
|
|
feat_cache=self._feat_map, |
|
|
feat_idx=self._conv_idx, |
|
|
first_chunk=False, |
|
|
) |
|
|
out = torch.cat([out, out_], 2) |
|
|
return out |
|
|
|
|
|
def reparameterize(self, mu, log_var): |
|
|
std = torch.exp(0.5 * log_var) |
|
|
eps = torch.randn_like(std) |
|
|
return eps * std + mu |
|
|
|
|
|
def sample(self, imgs, deterministic=False): |
|
|
mu, log_var = self.encode(imgs) |
|
|
if deterministic: |
|
|
return mu |
|
|
std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0)) |
|
|
return mu + std * torch.randn_like(std) |
|
|
|
|
|
def clear_cache(self): |
|
|
self._conv_num = count_conv1d(self.decoder) |
|
|
self._conv_idx = [0] |
|
|
self._feat_map = [None] * self._conv_num |
|
|
|
|
|
self._enc_conv_num = count_conv1d(self.encoder) |
|
|
self._enc_conv_idx = [0] |
|
|
self._enc_feat_map = [None] * self._enc_conv_num |
|
|
|