Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,246 +1,488 @@
|
|
| 1 |
-
|
| 2 |
|
| 3 |
-
language:
|
| 4 |
|
| 5 |
-
license:
|
| 6 |
|
| 7 |
-
library_name:
|
| 8 |
|
| 9 |
-
tags:
|
| 10 |
|
| 11 |
-
- computer-vision
|
| 12 |
|
| 13 |
-
- image-
|
| 14 |
|
| 15 |
-
- age-estimation
|
| 16 |
|
| 17 |
-
- face-
|
| 18 |
|
| 19 |
-
- resnet50v2
|
| 20 |
|
| 21 |
-
- tensorflow-
|
| 22 |
|
| 23 |
-
- keras
|
| 24 |
|
| 25 |
-
- utkface-
|
| 26 |
|
| 27 |
-
- bias-correction
|
| 28 |
|
| 29 |
-
- age-groups- age-
|
| 30 |
|
| 31 |
-
- classification
|
| 32 |
|
| 33 |
-
- deep-learning-
|
| 34 |
|
| 35 |
-
- facial-analysis
|
| 36 |
|
| 37 |
-
- demographic-estimation-
|
| 38 |
|
| 39 |
-
- transfer-learning
|
| 40 |
|
| 41 |
-
datasets
|
| 42 |
|
| 43 |
-
- UTKFace
|
| 44 |
|
| 45 |
-
metrics
|
| 46 |
|
| 47 |
-
- accuracy
|
| 48 |
|
| 49 |
-
model-index
|
| 50 |
|
| 51 |
-
- name: age-group-classifier
|
| 52 |
|
| 53 |
-
results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
- task: - task:
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
name: Age Group Classification name: Age Group Classification
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
type: UTKFace type: UTKFace
|
| 64 |
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
metrics: metrics:
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
|
| 77 |
-
base_model: tensorflow/resnet50v2
|
| 78 |
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
- src: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/image-classification-input.jpg
|
| 82 |
|
| 83 |
-
|
| 84 |
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
This model performs age group classification on facial images, predicting one of 5 age categories instead of exact ages. It was specifically designed to solve the common bias problem where older adults (70+) are incorrectly predicted as young adults (30s).
|
| 88 |
|
| 89 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
|
| 93 |
-
|
| 94 |
|
| 95 |
- **Practical Categories**: Returns useful age ranges rather than potentially inaccurate exact ages
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
- **Stable Architecture**: ResNet50V2 backbone with proven reliability
|
| 100 |
|
| 101 |
-
### Using Hugging Face Transformers
|
| 102 |
|
| 103 |
-
|
| 104 |
|
| 105 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
from PIL import Image### Architecture
|
| 108 |
|
| 109 |
-
|
| 110 |
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
classifier = pipeline("image-classification", - **Input**: RGB facial images (224x224)
|
| 114 |
|
|
|
|
|
|
|
| 115 |
model="Sharris/age-group-classifier")- **Output**: Age group probabilities
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
|
|
|
| 118 |
|
| 119 |
-
|
| 120 |
|
| 121 |
-
|
| 122 |
|
| 123 |
results = classifier(image)- **Group 1**: Young Adult (21-40 years)
|
| 124 |
|
|
|
|
|
|
|
| 125 |
- **Group 2**: Middle Age (41-60 years)
|
| 126 |
|
| 127 |
-
|
| 128 |
|
| 129 |
-
print(f"
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
### Performance
|
| 134 |
|
|
|
|
|
|
|
| 135 |
### Using TensorFlow Directly- **Validation Accuracy**: 75.5%
|
| 136 |
|
| 137 |
-
|
| 138 |
|
| 139 |
-
|
| 140 |
|
| 141 |
-
|
| 142 |
|
| 143 |
-
|
| 144 |
|
| 145 |
-
|
| 146 |
|
|
|
|
| 147 |
|
| 148 |
|
| 149 |
-
# Download and load model### Original Issue
|
| 150 |
|
| 151 |
-
|
| 152 |
|
| 153 |
-
|
| 154 |
|
| 155 |
-
|
| 156 |
|
| 157 |
-
|
| 158 |
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
-
|
| 162 |
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
image = Image.open("face_image.jpg").convert("RGB")- **Balanced Training**: Proper representation across all age groups
|
| 166 |
|
| 167 |
-
image = image.resize((224, 224))- **Transfer Learning**: Leverages ResNet50V2 features optimized for facial analysis
|
| 168 |
|
| 169 |
-
image_array = np.
|
| 170 |
|
| 171 |
-
image_array = np.expand_dims(image_array, axis=0)## Usage
|
| 172 |
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
|
| 176 |
|
| 177 |
-
predictions = model.predict(image_array)[0]from transformers import pipeline
|
| 178 |
|
| 179 |
-
age_groups = ["Youth (0-20)", "Young Adult (21-40)", "Middle Age (41-60)", import numpy as np
|
| 180 |
|
| 181 |
-
|
| 182 |
|
|
|
|
| 183 |
|
|
|
|
| 184 |
|
| 185 |
-
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
| 188 |
|
| 189 |
model="your-username/age-group-classifier")
|
| 190 |
|
|
|
|
|
|
|
| 191 |
print(f"Predicted: {predicted_group} ({confidence:.1%} confidence)")
|
| 192 |
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
image = Image.open("face_image.jpg")
|
| 196 |
|
|
|
|
|
|
|
| 197 |
## π― Model Overviewresults = classifier(image)
|
| 198 |
|
|
|
|
| 199 |
|
|
|
|
| 200 |
|
| 201 |
-
### The Problem We Solvedprint(f"Predicted age group: {results[0]['label']}")
|
| 202 |
|
| 203 |
-
Traditional age regression models suffer from **severe age bias**:print(f"Confidence: {results[0]['score']:.2%}")
|
| 204 |
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
-
- Inconsistent predictions across age ranges
|
| 208 |
|
| 209 |
-
|
| 210 |
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
[
|
| 214 |
|
| 215 |
-
###
|
| 216 |
|
| 217 |
-
- **
|
| 218 |
|
| 219 |
-
- **
|
| 220 |
|
| 221 |
-
- **
|
| 222 |
|
| 223 |
-
- **
|
| 224 |
|
| 225 |
-
|
| 226 |
|
| 227 |
-
## π Model Performance```
|
| 228 |
|
| 229 |
|
|
|
|
| 230 |
|
| 231 |
-
| Metric | Value | Description |## Training Details
|
| 232 |
|
| 233 |
-
|--------|-------|-------------|
|
| 234 |
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
-
|
| 238 |
|
| 239 |
-
| **Generalization Gap** | **3.6%** | Healthy gap - no overfitting |- **Size**: 23,687 facial images
|
| 240 |
|
| 241 |
-
| **Training Epochs** | **13** | Early stopping applied |- **Split**: 80% training, 20% validation
|
| 242 |
|
| 243 |
-
|
| 244 |
|
| 245 |
|
| 246 |
|
|
|
|
| 1 |
+
---------
|
| 2 |
|
| 3 |
+
language: en
|
| 4 |
|
| 5 |
+
license: mitlanguage: enlanguage: en
|
| 6 |
|
| 7 |
+
library_name: tensorflow
|
| 8 |
|
| 9 |
+
tags:license: mitlicense: mit
|
| 10 |
|
| 11 |
+
- computer-vision
|
| 12 |
|
| 13 |
+
- image-classificationlibrary_name: tensorflowlibrary_name: tensorflow
|
| 14 |
|
| 15 |
+
- age-estimation
|
| 16 |
|
| 17 |
+
- face-analysistags:tags:
|
| 18 |
|
| 19 |
+
- resnet50v2
|
| 20 |
|
| 21 |
+
- tensorflow- computer-vision- computer-vision
|
| 22 |
|
| 23 |
+
- keras
|
| 24 |
|
| 25 |
+
- utkface- image-classification- image-classification
|
| 26 |
|
| 27 |
+
- bias-correction
|
| 28 |
|
| 29 |
+
- age-groups- age-estimation- age-estimation
|
| 30 |
|
| 31 |
+
- classification
|
| 32 |
|
| 33 |
+
- deep-learning- face-analysis- face-analysis
|
| 34 |
|
| 35 |
+
- facial-analysis
|
| 36 |
|
| 37 |
+
- demographic-estimation- resnet50v2- resnet50v2
|
| 38 |
|
| 39 |
+
- transfer-learning
|
| 40 |
|
| 41 |
+
datasets:- tensorflow- tensorflow
|
| 42 |
|
| 43 |
+
- UTKFace
|
| 44 |
|
| 45 |
+
metrics:- keras- keras
|
| 46 |
|
| 47 |
+
- accuracy
|
| 48 |
|
| 49 |
+
model-index:- utkface- utkface
|
| 50 |
|
| 51 |
+
- name: age-group-classifier
|
| 52 |
|
| 53 |
+
results:- bias-correction- bias-correction
|
| 54 |
+
|
| 55 |
+
- task:
|
| 56 |
+
|
| 57 |
+
type: image-classification- age-groups- age-groups
|
| 58 |
+
|
| 59 |
+
name: Age Group Classification
|
| 60 |
+
|
| 61 |
+
dataset:- classification- classification
|
| 62 |
+
|
| 63 |
+
type: UTKFace
|
| 64 |
+
|
| 65 |
+
name: UTKFace- deep-learning- deep-learning
|
| 66 |
+
|
| 67 |
+
metrics:
|
| 68 |
+
|
| 69 |
+
- type: accuracy- facial-analysis- facial-analysis
|
| 70 |
+
|
| 71 |
+
value: 0.755
|
| 72 |
+
|
| 73 |
+
name: Validation Accuracy- demographic-estimation- demographic-estimation
|
| 74 |
+
|
| 75 |
+
pipeline_tag: image-classification
|
| 76 |
+
|
| 77 |
+
base_model: tensorflow/resnet50v2- transfer-learning- transfer-learning
|
| 78 |
+
|
| 79 |
+
widget:
|
| 80 |
+
|
| 81 |
+
- src: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/image-classification-input.jpgdatasets:datasets:
|
| 82 |
+
|
| 83 |
+
example_title: Sample Face Image
|
| 84 |
+
|
| 85 |
+
---- UTKFace- UTKFace
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# Age Group Classification Model π―π₯metrics:metrics:
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
A breakthrough age group classification model that **solves the age prediction bias problem** where 70-year-olds are incorrectly predicted as 30-year-olds. Instead of exact age regression, this model classifies faces into 5 practical age groups with **75.5% validation accuracy**.- accuracy- accuracy
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
## π Quick Startmodel-index:model-index:
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
### Using Hugging Face Transformers- name: age-group-classifier- name: age-group-classifier
|
| 102 |
+
|
| 103 |
+
```python
|
| 104 |
+
|
| 105 |
+
from transformers import pipeline results: results:
|
| 106 |
+
|
| 107 |
+
from PIL import Image
|
| 108 |
|
| 109 |
- task: - task:
|
| 110 |
|
| 111 |
+
# Load the classifier
|
| 112 |
+
|
| 113 |
+
classifier = pipeline("image-classification", type: image-classification type: image-classification
|
| 114 |
+
|
| 115 |
+
model="Sharris/age-group-classifier")
|
| 116 |
|
| 117 |
name: Age Group Classification name: Age Group Classification
|
| 118 |
|
| 119 |
+
# Classify an image
|
| 120 |
+
|
| 121 |
+
image = Image.open("face_image.jpg") dataset: dataset:
|
| 122 |
+
|
| 123 |
+
results = classifier(image)
|
| 124 |
|
| 125 |
type: UTKFace type: UTKFace
|
| 126 |
|
| 127 |
+
print(f"Predicted age group: {results[0]['label']}")
|
| 128 |
+
|
| 129 |
+
print(f"Confidence: {results[0]['score']:.2%}") name: UTKFace name: UTKFace
|
| 130 |
+
|
| 131 |
+
```
|
| 132 |
|
| 133 |
metrics: metrics:
|
| 134 |
|
| 135 |
+
### Using TensorFlow Directly
|
| 136 |
+
|
| 137 |
+
```python - type: accuracy - type: accuracy
|
| 138 |
|
| 139 |
+
import tensorflow as tf
|
| 140 |
|
| 141 |
+
import numpy as np value: 0.755 value: 0.755
|
| 142 |
+
|
| 143 |
+
from PIL import Image
|
| 144 |
|
| 145 |
+
from huggingface_hub import hf_hub_download name: Validation Accuracy name: Validation Accuracy
|
| 146 |
|
|
|
|
| 147 |
|
| 148 |
+
|
| 149 |
+
# Download and load modelpipeline_tag: image-classification---
|
| 150 |
+
|
| 151 |
+
model_path = hf_hub_download(
|
| 152 |
+
|
| 153 |
+
repo_id="Sharris/age-group-classifier",base_model: tensorflow/resnet50v2
|
| 154 |
+
|
| 155 |
+
filename="resnet50v2_age_classifier_best.h5"
|
| 156 |
+
|
| 157 |
+
)widget:# Age Group Classification Model
|
| 158 |
+
|
| 159 |
+
model = tf.keras.models.load_model(model_path)
|
| 160 |
|
| 161 |
- src: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/image-classification-input.jpg
|
| 162 |
|
| 163 |
+
# Preprocess image
|
| 164 |
|
| 165 |
+
image = Image.open("face_image.jpg").convert("RGB") example_title: Sample Face Image## Model Description
|
| 166 |
+
|
| 167 |
+
image = image.resize((224, 224))
|
| 168 |
+
|
| 169 |
+
image_array = np.array(image, dtype=np.float32) / 255.0---
|
| 170 |
+
|
| 171 |
+
image_array = np.expand_dims(image_array, axis=0)
|
| 172 |
|
| 173 |
This model performs age group classification on facial images, predicting one of 5 age categories instead of exact ages. It was specifically designed to solve the common bias problem where older adults (70+) are incorrectly predicted as young adults (30s).
|
| 174 |
|
| 175 |
+
# Predict
|
| 176 |
+
|
| 177 |
+
predictions = model.predict(image_array)[0]# Age Group Classification Model π―π₯
|
| 178 |
+
|
| 179 |
+
age_groups = ["Youth (0-20)", "Young Adult (21-40)", "Middle Age (41-60)",
|
| 180 |
+
|
| 181 |
+
"Senior (61-80)", "Elderly (81-100)"]### Key Features
|
| 182 |
+
|
| 183 |
+
|
| 184 |
|
| 185 |
+
predicted_group = age_groups[np.argmax(predictions)]A breakthrough age group classification model that **solves the age prediction bias problem** where 70-year-olds are incorrectly predicted as 30-year-olds. Instead of exact age regression, this model classifies faces into 5 practical age groups with **75.5% validation accuracy**.- **Bias-Free Predictions**: Correctly classifies seniors instead of mispredicting them as young adults
|
| 186 |
|
| 187 |
+
confidence = predictions[np.argmax(predictions)]
|
| 188 |
|
| 189 |
- **Practical Categories**: Returns useful age ranges rather than potentially inaccurate exact ages
|
| 190 |
|
| 191 |
+
print(f"Predicted: {predicted_group} ({confidence:.1%} confidence)")
|
| 192 |
+
|
| 193 |
+
```## π Quick Start- **High Performance**: 75.5% validation accuracy on 5-class classification
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
## π― Model Overview- **Stable Architecture**: ResNet50V2 backbone with proven reliability
|
| 198 |
|
|
|
|
| 199 |
|
|
|
|
| 200 |
|
| 201 |
+
### The Problem We Solved### Using Hugging Face Transformers
|
| 202 |
|
| 203 |
+
Traditional age regression models suffer from **severe age bias**:
|
| 204 |
+
|
| 205 |
+
- 70-year-old faces β Predicted as 30-year-olds β```python## Model Details
|
| 206 |
+
|
| 207 |
+
- Inconsistent predictions across age ranges
|
| 208 |
+
|
| 209 |
+
- Poor handling of seniors and elderly individualsfrom transformers import pipeline
|
| 210 |
+
|
| 211 |
+
- Exact age predictions often inaccurate and not practical
|
| 212 |
|
| 213 |
from PIL import Image### Architecture
|
| 214 |
|
| 215 |
+
### Our Solution: Age Group Classification
|
| 216 |
|
| 217 |
+
- **5 Age Groups**: More robust than exact age regression β
- **Base Model**: ResNet50V2 (pre-trained on ImageNet)
|
| 218 |
+
|
| 219 |
+
- **Bias-Free**: 75-year-olds correctly classified as "Senior (61-80)" β
|
| 220 |
+
|
| 221 |
+
- **Practical**: Returns useful age ranges for real applications β
# Load the classifier- **Task**: Multi-class classification (5 categories)
|
| 222 |
+
|
| 223 |
+
- **Reliable**: 75.5% validation accuracy with stable predictions β
|
| 224 |
|
| 225 |
classifier = pipeline("image-classification", - **Input**: RGB facial images (224x224)
|
| 226 |
|
| 227 |
+
## π Model Performance
|
| 228 |
+
|
| 229 |
model="Sharris/age-group-classifier")- **Output**: Age group probabilities
|
| 230 |
|
| 231 |
+
| Metric | Value | Description |
|
| 232 |
+
|
| 233 |
+
|--------|-------|-------------|
|
| 234 |
+
|
| 235 |
+
| **Validation Accuracy** | **75.5%** | 5-class classification accuracy |
|
| 236 |
+
|
| 237 |
+
| **Training Accuracy** | **79.1%** | Training set performance |# Classify an image### Age Groups
|
| 238 |
|
| 239 |
+
| **Generalization Gap** | **3.6%** | Healthy gap - no overfitting |
|
| 240 |
|
| 241 |
+
| **Training Epochs** | **13** | Early stopping applied |image = Image.open("face_image.jpg")- **Group 0**: Youth (0-20 years)
|
| 242 |
|
| 243 |
+
| **Parameters** | **23.8M** | ResNet50V2 backbone |
|
| 244 |
|
| 245 |
results = classifier(image)- **Group 1**: Young Adult (21-40 years)
|
| 246 |
|
| 247 |
+
## π·οΈ Age Groups
|
| 248 |
+
|
| 249 |
- **Group 2**: Middle Age (41-60 years)
|
| 250 |
|
| 251 |
+
| Group ID | Age Range | Label | Description |
|
| 252 |
|
| 253 |
+
|----------|-----------|-------|-------------|print(f"Predicted age group: {results[0]['label']}")- **Group 3**: Senior (61-80 years)
|
| 254 |
|
| 255 |
+
| 0 | 0-20 years | Youth | Children, teenagers |
|
| 256 |
+
|
| 257 |
+
| 1 | 21-40 years | Young Adult | College age to early career |print(f"Confidence: {results[0]['score']:.2%}")- **Group 4**: Elderly (81-100 years)
|
| 258 |
+
|
| 259 |
+
| 2 | 41-60 years | Middle Age | Established adults |
|
| 260 |
+
|
| 261 |
+
| 3 | 61-80 years | Senior | Retirement age |```
|
| 262 |
+
|
| 263 |
+
| 4 | 81-100 years | Elderly | Advanced age |
|
| 264 |
|
| 265 |
### Performance
|
| 266 |
|
| 267 |
+
## π§ Technical Details
|
| 268 |
+
|
| 269 |
### Using TensorFlow Directly- **Validation Accuracy**: 75.5%
|
| 270 |
|
| 271 |
+
### Architecture
|
| 272 |
|
| 273 |
+
- **Base Model**: ResNet50V2 (pre-trained on ImageNet)```python- **Training Accuracy**: 79.1%
|
| 274 |
|
| 275 |
+
- **Task**: Multi-class classification (5 categories)
|
| 276 |
|
| 277 |
+
- **Input**: RGB facial images (224Γ224)import tensorflow as tf- **Generalization Gap**: 3.6% (healthy)
|
| 278 |
|
| 279 |
+
- **Output**: Age group probabilities
|
| 280 |
|
| 281 |
+
- **Transfer Learning**: 2-phase training (frozen base β fine-tuning)import numpy as np- **Training Epochs**: 13 (with early stopping)
|
| 282 |
|
| 283 |
|
|
|
|
| 284 |
|
| 285 |
+
### Training Configurationfrom PIL import Image
|
| 286 |
|
| 287 |
+
- **Framework**: TensorFlow/Keras
|
| 288 |
|
| 289 |
+
- **Optimizer**: Adam (lr: 0.001 β 0.0001)from huggingface_hub import hf_hub_download## Problem Solved
|
| 290 |
|
| 291 |
+
- **Loss Function**: Categorical Crossentropy
|
| 292 |
|
| 293 |
+
- **Batch Size**: 32
|
| 294 |
+
|
| 295 |
+
- **Data Split**: 80% train, 20% validation (stratified)
|
| 296 |
+
|
| 297 |
+
- **Early Stopping**: Patience=3 epochs# Download and load model### Original Issue
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
### Datasetmodel_path = hf_hub_download(Traditional age regression models often exhibit severe bias:
|
| 302 |
+
|
| 303 |
+
- **Source**: UTKFace dataset
|
| 304 |
+
|
| 305 |
+
- **Size**: 23,687 facial images repo_id="Sharris/age-group-classifier",- 70-year-old faces predicted as 30-year-olds
|
| 306 |
+
|
| 307 |
+
- **Age Distribution**: Balanced across age groups
|
| 308 |
+
|
| 309 |
+
- **Preprocessing**: Stratified sampling for equal representation filename="resnet50v2_age_classifier_best.h5"- Inconsistent predictions across age ranges
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
## π― Bias Validation)- Poor handling of seniors and elderly individuals
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
### Test Resultsmodel = tf.keras.models.load_model(model_path)
|
| 318 |
|
| 319 |
+
| Input Age | Predicted Group | Status |
|
| 320 |
|
| 321 |
+
|-----------|----------------|---------|### Our Solution
|
| 322 |
+
|
| 323 |
+
| 15 years | Youth (0-20) | β
Correct |
|
| 324 |
+
|
| 325 |
+
| 25 years | Young Adult (21-40) | β
Correct |# Preprocess image- **Age Group Classification**: More robust than exact age regression
|
| 326 |
+
|
| 327 |
+
| 35 years | Young Adult (21-40) | β
Correct |
|
| 328 |
+
|
| 329 |
+
| 45 years | Middle Age (41-60) | β
Correct |image = Image.open("face_image.jpg").convert("RGB")- **Balanced Training**: Proper representation across all age groups
|
| 330 |
+
|
| 331 |
+
| 55 years | Middle Age (41-60) | β
Correct |
|
| 332 |
+
|
| 333 |
+
| 65 years | Senior (61-80) | β
Correct |image = image.resize((224, 224))- **Transfer Learning**: Leverages ResNet50V2 features optimized for facial analysis
|
| 334 |
+
|
| 335 |
+
| **75 years** | **Senior (61-80)** | β
**BIAS FIXED!** |
|
| 336 |
+
|
| 337 |
+
| 85 years | Elderly (81-100) | β
Correct |image_array = np.array(image, dtype=np.float32) / 255.0
|
| 338 |
|
|
|
|
| 339 |
|
|
|
|
| 340 |
|
| 341 |
+
**Key Achievement**: 70+ year olds are now correctly classified as Senior/Elderly instead of being mispredicted as young adults!image_array = np.expand_dims(image_array, axis=0)## Usage
|
| 342 |
|
|
|
|
| 343 |
|
| 344 |
|
| 345 |
+
## π‘ Use Cases
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
### β
Recommended Applications# Predict```python
|
| 350 |
+
|
| 351 |
+
- **Content Personalization**: Age-appropriate content delivery
|
| 352 |
+
|
| 353 |
+
- **Market Research**: Demographic analysis of audiencespredictions = model.predict(image_array)[0]from transformers import pipeline
|
| 354 |
+
|
| 355 |
+
- **Photo Organization**: Automatic family album categorization
|
| 356 |
+
|
| 357 |
+
- **Social Media**: Age group insights and targetingage_groups = ["Youth (0-20)", "Young Adult (21-40)", "Middle Age (41-60)", import numpy as np
|
| 358 |
+
|
| 359 |
+
- **Research**: Age-related studies and analysis
|
| 360 |
|
| 361 |
+
- **Accessibility**: Age-aware interface design "Senior (61-80)", "Elderly (81-100)"]from PIL import Image
|
| 362 |
|
|
|
|
| 363 |
|
|
|
|
| 364 |
|
| 365 |
+
### β Limitations
|
| 366 |
|
| 367 |
+
- **Border Cases**: Ages near group boundaries (e.g., 40 vs 41) can be challenging
|
| 368 |
|
| 369 |
+
- **Image Quality**: Performance varies with lighting and image qualitypredicted_group = age_groups[np.argmax(predictions)]# Load the model
|
| 370 |
|
| 371 |
+
- **Pose Sensitivity**: Works best with frontal face images
|
| 372 |
|
| 373 |
+
- **Demographic Bias**: May vary across different ethnic groupsconfidence = predictions[np.argmax(predictions)]classifier = pipeline("image-classification",
|
| 374 |
+
|
| 375 |
+
- **Not for Legal Use**: Estimates only, not for official identification
|
| 376 |
|
| 377 |
model="your-username/age-group-classifier")
|
| 378 |
|
| 379 |
+
## π¬ Model Files
|
| 380 |
+
|
| 381 |
print(f"Predicted: {predicted_group} ({confidence:.1%} confidence)")
|
| 382 |
|
| 383 |
+
- **`resnet50v2_age_classifier_best.h5`**: Complete trained model (98MB)
|
| 384 |
+
|
| 385 |
+
- **`config.json`**: Model configuration and label mappings```# Classify an image
|
| 386 |
+
|
| 387 |
+
- **`README.md`**: This comprehensive model card
|
| 388 |
|
| 389 |
image = Image.open("face_image.jpg")
|
| 390 |
|
| 391 |
+
## π€ Live Demo
|
| 392 |
+
|
| 393 |
## π― Model Overviewresults = classifier(image)
|
| 394 |
|
| 395 |
+
Try the model instantly with our Gradio demo:
|
| 396 |
|
| 397 |
+
**[Age Group Classifier Demo](https://huggingface.co/spaces/Sharris/age-group-classifier-demo)**
|
| 398 |
|
|
|
|
| 399 |
|
|
|
|
| 400 |
|
| 401 |
+
Features:### The Problem We Solvedprint(f"Predicted age group: {results[0]['label']}")
|
| 402 |
+
|
| 403 |
+
- Upload facial images
|
| 404 |
+
|
| 405 |
+
- Get age group predictionsTraditional age regression models suffer from **severe age bias**:print(f"Confidence: {results[0]['score']:.2%}")
|
| 406 |
+
|
| 407 |
+
- View confidence scores for all groups
|
| 408 |
+
|
| 409 |
+
- Compare predictions across different ages- 70-year-old faces β Predicted as 30-year-olds β```
|
| 410 |
+
|
| 411 |
|
|
|
|
| 412 |
|
| 413 |
+
## π License & Ethics- Inconsistent predictions across age ranges
|
| 414 |
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
### License- Poor handling of seniors and elderly individuals### Example Output
|
| 418 |
+
|
| 419 |
+
- **Model**: MIT License
|
| 420 |
+
|
| 421 |
+
- **Code**: MIT License- Exact age predictions often inaccurate and not practical```python
|
| 422 |
+
|
| 423 |
+
- **Dataset**: UTKFace (academic/research use)
|
| 424 |
|
| 425 |
[
|
| 426 |
|
| 427 |
+
### Ethical Considerations
|
| 428 |
|
| 429 |
+
- **Bias Mitigation**: Specifically designed to reduce age prediction bias### Our Solution: Age Group Classification {'label': 'Senior (61-80)', 'score': 0.87},
|
| 430 |
|
| 431 |
+
- **Fairness**: Balanced training across all age groups
|
| 432 |
|
| 433 |
+
- **Transparency**: Clear category boundaries and confidence scores- **5 Age Groups**: More robust than exact age regression β
{'label': 'Middle Age (41-60)', 'score': 0.09},
|
| 434 |
|
| 435 |
+
- **Privacy**: Consider consent when processing facial images
|
| 436 |
|
| 437 |
+
- **Responsible Use**: Avoid high-stakes decisions without human oversight- **Bias-Free**: 75-year-olds correctly classified as "Senior (61-80)" β
{'label': 'Elderly (81-100)', 'score': 0.03},
|
| 438 |
|
|
|
|
| 439 |
|
| 440 |
|
| 441 |
+
## π Citation- **Practical**: Returns useful age ranges for real applications β
{'label': 'Young Adult (21-40)', 'score': 0.01},
|
| 442 |
|
|
|
|
| 443 |
|
|
|
|
| 444 |
|
| 445 |
+
If you use this model in your research, please cite:- **Reliable**: 75.5% validation accuracy with stable predictions β
{'label': 'Youth (0-20)', 'score': 0.00}
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
|
| 449 |
+
```bibtex]
|
| 450 |
+
|
| 451 |
+
@misc{age-group-classifier-2025,
|
| 452 |
+
|
| 453 |
+
title={Age Group Classification: Solving Age Prediction Bias in Facial Analysis},## π Model Performance```
|
| 454 |
+
|
| 455 |
+
author={Sharris},
|
| 456 |
+
|
| 457 |
+
year={2025},
|
| 458 |
+
|
| 459 |
+
publisher={Hugging Face},
|
| 460 |
+
|
| 461 |
+
url={https://huggingface.co/Sharris/age-group-classifier}| Metric | Value | Description |## Training Details
|
| 462 |
+
|
| 463 |
+
}
|
| 464 |
+
|
| 465 |
+
```|--------|-------|-------------|
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
## π€ Contact & Support| **Validation Accuracy** | **75.5%** | 5-class classification accuracy |### Dataset
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
- **Model Repository**: [Sharris/age-group-classifier](https://huggingface.co/Sharris/age-group-classifier)| **Training Accuracy** | **79.1%** | Training set performance |- **Source**: UTKFace dataset
|
| 474 |
+
|
| 475 |
+
- **Demo Space**: [age-group-classifier-demo](https://huggingface.co/spaces/Sharris/age-group-classifier-demo)
|
| 476 |
+
|
| 477 |
+
- **Issues**: Use the discussions tab for questions and feedback| **Generalization Gap** | **3.6%** | Healthy gap - no overfitting |- **Size**: 23,687 facial images
|
| 478 |
+
|
| 479 |
+
|
| 480 |
|
| 481 |
+
---| **Training Epochs** | **13** | Early stopping applied |- **Split**: 80% training, 20% validation
|
| 482 |
|
|
|
|
| 483 |
|
|
|
|
| 484 |
|
| 485 |
+
**π Ready to use bias-free age group classification?** Try our [live demo](https://huggingface.co/spaces/Sharris/age-group-classifier-demo) or integrate the model into your applications today!| **Parameters** | **23.8M** | ResNet50V2 backbone |- **Preprocessing**: Stratified sampling to ensure balanced age group representation
|
| 486 |
|
| 487 |
|
| 488 |
|