File size: 7,884 Bytes
e4495a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Main training script for Code Comment Quality Classifier
"""
import os
import argparse
import logging
from pathlib import Path
from transformers import (
    Trainer, 
    TrainingArguments,
    EarlyStoppingCallback
)
from src import (
    load_config,
    prepare_datasets_for_training,
    create_model,
    get_model_size,
    get_trainable_params,
    compute_metrics_factory
)


def setup_logging(config: dict) -> None:
    """Setup logging configuration."""
    log_config = config.get('logging', {})
    log_level = getattr(logging, log_config.get('level', 'INFO'))
    log_file = log_config.get('log_file', './results/training.log')
    
    # Create log directory if needed
    log_dir = os.path.dirname(log_file)
    if log_dir:
        os.makedirs(log_dir, exist_ok=True)
    
    # Configure logging
    logging.basicConfig(
        level=log_level,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
        handlers=[
            logging.FileHandler(log_file),
            logging.StreamHandler()
        ]
    )


def main(config_path: str = "config.yaml"):
    """
    Main training function.
    
    Args:
        config_path: Path to configuration file
    """
    print("=" * 60)
    print("Code Comment Quality Classifier - Training")
    print("=" * 60)
    
    # Load configuration
    print("\n[1/7] Loading configuration...")
    config = load_config(config_path)
    print(f"βœ“ Configuration loaded from {config_path}")
    
    # Validate configuration
    from src.validation import validate_config
    config_errors = validate_config(config)
    if config_errors:
        print("\nβœ— Configuration validation errors:")
        for error in config_errors:
            print(f"  - {error}")
        raise ValueError("Invalid configuration. Please fix the errors above.")
    
    # Setup logging
    setup_logging(config)
    logging.info("Starting training process")
    
    # Prepare datasets
    print("\n[2/7] Preparing datasets...")
    tokenized_datasets, label2id, id2label, tokenizer = prepare_datasets_for_training(config_path)
    print(f"βœ“ Train samples: {len(tokenized_datasets['train'])}")
    print(f"βœ“ Validation samples: {len(tokenized_datasets['validation'])}")
    print(f"βœ“ Test samples: {len(tokenized_datasets['test'])}")
    logging.info(f"Dataset sizes - Train: {len(tokenized_datasets['train'])}, "
                 f"Val: {len(tokenized_datasets['validation'])}, "
                 f"Test: {len(tokenized_datasets['test'])}")
    
    # Create model
    print("\n[3/7] Loading model...")
    dropout = config['model'].get('dropout')
    model = create_model(
        model_name=config['model']['name'],
        num_labels=config['model']['num_labels'],
        label2id=label2id,
        id2label=id2label,
        dropout=dropout
    )
    model_size = get_model_size(model)
    params_info = get_trainable_params(model)
    print(f"βœ“ Model: {config['model']['name']}")
    print(f"βœ“ Total Parameters: {model_size:.2f}M")
    print(f"βœ“ Trainable Parameters: {params_info['trainable'] / 1e6:.2f}M")
    logging.info(f"Model: {config['model']['name']}, Size: {model_size:.2f}M parameters")
    
    # Setup training arguments
    print("\n[4/7] Setting up training...")
    output_dir = config['training']['output_dir']
    os.makedirs(output_dir, exist_ok=True)
    
    training_args = TrainingArguments(
        output_dir=output_dir,
        num_train_epochs=config['training']['num_train_epochs'],
        per_device_train_batch_size=config['training']['per_device_train_batch_size'],
        per_device_eval_batch_size=config['training']['per_device_eval_batch_size'],
        gradient_accumulation_steps=config['training'].get('gradient_accumulation_steps', 1),
        learning_rate=config['training']['learning_rate'],
        lr_scheduler_type=config['training'].get('lr_scheduler_type', 'linear'),
        weight_decay=config['training']['weight_decay'],
        warmup_steps=config['training'].get('warmup_steps'),
        warmup_ratio=config['training'].get('warmup_ratio'),
        logging_dir=os.path.join(output_dir, 'logs'),
        logging_steps=config['training']['logging_steps'],
        eval_steps=config['training']['eval_steps'],
        save_steps=config['training']['save_steps'],
        save_total_limit=config['training'].get('save_total_limit', 3),
        eval_strategy=config['training']['evaluation_strategy'],
        save_strategy=config['training']['save_strategy'],
        load_best_model_at_end=config['training']['load_best_model_at_end'],
        metric_for_best_model=config['training']['metric_for_best_model'],
        greater_is_better=config['training'].get('greater_is_better', True),
        seed=config['training']['seed'],
        fp16=config['training'].get('fp16', False),
        dataloader_num_workers=config['training'].get('dataloader_num_workers', 4),
        dataloader_pin_memory=config['training'].get('dataloader_pin_memory', True),
        remove_unused_columns=config['training'].get('remove_unused_columns', True),
        report_to=config['training'].get('report_to', ['none']),
        push_to_hub=False,
    )
    
    # Create compute_metrics function with label mapping
    compute_metrics_fn = compute_metrics_factory(id2label)
    
    # Setup callbacks
    callbacks = []
    if config['training'].get('early_stopping_patience'):
        early_stopping = EarlyStoppingCallback(
            early_stopping_patience=config['training']['early_stopping_patience'],
            early_stopping_threshold=config['training'].get('early_stopping_threshold', 0.0)
        )
        callbacks.append(early_stopping)
        logging.info(f"Early stopping enabled with patience={config['training']['early_stopping_patience']}")
    
    # Create trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_datasets['train'],
        eval_dataset=tokenized_datasets['validation'],
        tokenizer=tokenizer,
        compute_metrics=compute_metrics_fn,
        callbacks=callbacks
    )
    
    print("βœ“ Trainer initialized")
    logging.info("Trainer initialized with all configurations")
    
    # Train model
    print("\n[5/7] Training model...")
    print("-" * 60)
    logging.info("Starting training")
    train_result = trainer.train()
    logging.info(f"Training completed. Train loss: {train_result.training_loss:.4f}")
    
    # Save final model
    print("\n[6/7] Saving model...")
    final_model_path = os.path.join(output_dir, 'final_model')
    trainer.save_model(final_model_path)
    tokenizer.save_pretrained(final_model_path)
    print(f"βœ“ Model saved to {final_model_path}")
    logging.info(f"Model saved to {final_model_path}")
    
    # Evaluate on test set
    print("\n[7/7] Evaluating on test set...")
    print("=" * 60)
    print("Final Evaluation on Test Set")
    print("=" * 60)
    test_results = trainer.evaluate(tokenized_datasets['test'], metric_key_prefix='test')
    
    print("\nTest Results:")
    for key, value in sorted(test_results.items()):
        if isinstance(value, float):
            print(f"  {key}: {value:.4f}")
    logging.info("Test evaluation completed")
    
    print("\n" + "=" * 60)
    print("Training Complete! πŸŽ‰")
    print("=" * 60)
    print(f"\nModel location: {final_model_path}")
    print("\nNext steps:")
    print("1. Run evaluation: python scripts/evaluate.py")
    print("2. Test inference: python inference.py")
    print("3. Upload to Hub: python scripts/upload_to_hub.py")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Train Code Comment Quality Classifier")
    parser.add_argument(
        "--config",
        type=str,
        default="config.yaml",
        help="Path to configuration file"
    )
    args = parser.parse_args()
    
    main(args.config)