File size: 7,884 Bytes
e4495a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
"""
Main training script for Code Comment Quality Classifier
"""
import os
import argparse
import logging
from pathlib import Path
from transformers import (
Trainer,
TrainingArguments,
EarlyStoppingCallback
)
from src import (
load_config,
prepare_datasets_for_training,
create_model,
get_model_size,
get_trainable_params,
compute_metrics_factory
)
def setup_logging(config: dict) -> None:
"""Setup logging configuration."""
log_config = config.get('logging', {})
log_level = getattr(logging, log_config.get('level', 'INFO'))
log_file = log_config.get('log_file', './results/training.log')
# Create log directory if needed
log_dir = os.path.dirname(log_file)
if log_dir:
os.makedirs(log_dir, exist_ok=True)
# Configure logging
logging.basicConfig(
level=log_level,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_file),
logging.StreamHandler()
]
)
def main(config_path: str = "config.yaml"):
"""
Main training function.
Args:
config_path: Path to configuration file
"""
print("=" * 60)
print("Code Comment Quality Classifier - Training")
print("=" * 60)
# Load configuration
print("\n[1/7] Loading configuration...")
config = load_config(config_path)
print(f"β Configuration loaded from {config_path}")
# Validate configuration
from src.validation import validate_config
config_errors = validate_config(config)
if config_errors:
print("\nβ Configuration validation errors:")
for error in config_errors:
print(f" - {error}")
raise ValueError("Invalid configuration. Please fix the errors above.")
# Setup logging
setup_logging(config)
logging.info("Starting training process")
# Prepare datasets
print("\n[2/7] Preparing datasets...")
tokenized_datasets, label2id, id2label, tokenizer = prepare_datasets_for_training(config_path)
print(f"β Train samples: {len(tokenized_datasets['train'])}")
print(f"β Validation samples: {len(tokenized_datasets['validation'])}")
print(f"β Test samples: {len(tokenized_datasets['test'])}")
logging.info(f"Dataset sizes - Train: {len(tokenized_datasets['train'])}, "
f"Val: {len(tokenized_datasets['validation'])}, "
f"Test: {len(tokenized_datasets['test'])}")
# Create model
print("\n[3/7] Loading model...")
dropout = config['model'].get('dropout')
model = create_model(
model_name=config['model']['name'],
num_labels=config['model']['num_labels'],
label2id=label2id,
id2label=id2label,
dropout=dropout
)
model_size = get_model_size(model)
params_info = get_trainable_params(model)
print(f"β Model: {config['model']['name']}")
print(f"β Total Parameters: {model_size:.2f}M")
print(f"β Trainable Parameters: {params_info['trainable'] / 1e6:.2f}M")
logging.info(f"Model: {config['model']['name']}, Size: {model_size:.2f}M parameters")
# Setup training arguments
print("\n[4/7] Setting up training...")
output_dir = config['training']['output_dir']
os.makedirs(output_dir, exist_ok=True)
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=config['training']['num_train_epochs'],
per_device_train_batch_size=config['training']['per_device_train_batch_size'],
per_device_eval_batch_size=config['training']['per_device_eval_batch_size'],
gradient_accumulation_steps=config['training'].get('gradient_accumulation_steps', 1),
learning_rate=config['training']['learning_rate'],
lr_scheduler_type=config['training'].get('lr_scheduler_type', 'linear'),
weight_decay=config['training']['weight_decay'],
warmup_steps=config['training'].get('warmup_steps'),
warmup_ratio=config['training'].get('warmup_ratio'),
logging_dir=os.path.join(output_dir, 'logs'),
logging_steps=config['training']['logging_steps'],
eval_steps=config['training']['eval_steps'],
save_steps=config['training']['save_steps'],
save_total_limit=config['training'].get('save_total_limit', 3),
eval_strategy=config['training']['evaluation_strategy'],
save_strategy=config['training']['save_strategy'],
load_best_model_at_end=config['training']['load_best_model_at_end'],
metric_for_best_model=config['training']['metric_for_best_model'],
greater_is_better=config['training'].get('greater_is_better', True),
seed=config['training']['seed'],
fp16=config['training'].get('fp16', False),
dataloader_num_workers=config['training'].get('dataloader_num_workers', 4),
dataloader_pin_memory=config['training'].get('dataloader_pin_memory', True),
remove_unused_columns=config['training'].get('remove_unused_columns', True),
report_to=config['training'].get('report_to', ['none']),
push_to_hub=False,
)
# Create compute_metrics function with label mapping
compute_metrics_fn = compute_metrics_factory(id2label)
# Setup callbacks
callbacks = []
if config['training'].get('early_stopping_patience'):
early_stopping = EarlyStoppingCallback(
early_stopping_patience=config['training']['early_stopping_patience'],
early_stopping_threshold=config['training'].get('early_stopping_threshold', 0.0)
)
callbacks.append(early_stopping)
logging.info(f"Early stopping enabled with patience={config['training']['early_stopping_patience']}")
# Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets['train'],
eval_dataset=tokenized_datasets['validation'],
tokenizer=tokenizer,
compute_metrics=compute_metrics_fn,
callbacks=callbacks
)
print("β Trainer initialized")
logging.info("Trainer initialized with all configurations")
# Train model
print("\n[5/7] Training model...")
print("-" * 60)
logging.info("Starting training")
train_result = trainer.train()
logging.info(f"Training completed. Train loss: {train_result.training_loss:.4f}")
# Save final model
print("\n[6/7] Saving model...")
final_model_path = os.path.join(output_dir, 'final_model')
trainer.save_model(final_model_path)
tokenizer.save_pretrained(final_model_path)
print(f"β Model saved to {final_model_path}")
logging.info(f"Model saved to {final_model_path}")
# Evaluate on test set
print("\n[7/7] Evaluating on test set...")
print("=" * 60)
print("Final Evaluation on Test Set")
print("=" * 60)
test_results = trainer.evaluate(tokenized_datasets['test'], metric_key_prefix='test')
print("\nTest Results:")
for key, value in sorted(test_results.items()):
if isinstance(value, float):
print(f" {key}: {value:.4f}")
logging.info("Test evaluation completed")
print("\n" + "=" * 60)
print("Training Complete! π")
print("=" * 60)
print(f"\nModel location: {final_model_path}")
print("\nNext steps:")
print("1. Run evaluation: python scripts/evaluate.py")
print("2. Test inference: python inference.py")
print("3. Upload to Hub: python scripts/upload_to_hub.py")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train Code Comment Quality Classifier")
parser.add_argument(
"--config",
type=str,
default="config.yaml",
help="Path to configuration file"
)
args = parser.parse_args()
main(args.config)
|