Snaseem2026 commited on
Commit
7313550
ยท
verified ยท
1 Parent(s): bf391d6

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +78 -271
README.md CHANGED
@@ -1,314 +1,121 @@
1
- ---
2
- language:
3
- - en
4
- license: mit
5
- library_name: transformers
6
- tags:
7
- - text-classification
8
- - code-quality
9
- - documentation
10
- - code-comments
11
- - developer-tools
12
- - code-review
13
- - distilbert
14
- datasets:
15
- - synthetic
16
- metrics:
17
- - accuracy
18
- - f1
19
- - precision
20
- - recall
21
- base_model: distilbert-base-uncased
22
- pipeline_tag: text-classification
23
- widget:
24
- - text: "This function calculates the Fibonacci sequence using dynamic programming to avoid redundant calculations. Time complexity: O(n), Space complexity: O(n)"
25
- example_title: "Excellent Comment"
26
- - text: "Calculates the sum of two numbers and returns the result"
27
- example_title: "Helpful Comment"
28
- - text: "does stuff with numbers"
29
- example_title: "Unclear Comment"
30
- - text: "DEPRECATED: Use calculate_new() instead. This method will be removed in v2.0"
31
- example_title: "Outdated Comment"
32
- - text: "Validates user input against SQL injection attacks using parameterized queries"
33
- example_title: "Excellent Example 2"
34
- - text: "magic happens here"
35
- example_title: "Unclear Example 2"
36
- model-index:
37
- - name: code-comment-classifier
38
- results:
39
- - task:
40
- type: text-classification
41
- name: Text Classification
42
- dataset:
43
- name: Synthetic Code Comments
44
- type: synthetic
45
- metrics:
46
- - type: accuracy
47
- value: 0.9485
48
- name: Accuracy
49
- verified: false
50
- - type: f1
51
- value: 0.9468
52
- name: F1 Score
53
- verified: false
54
- - type: precision
55
- value: 0.9535
56
- name: Precision
57
- verified: false
58
- - type: recall
59
- value: 0.9485
60
- name: Recall
61
- verified: false
62
- ---
63
-
64
  # Code Comment Quality Classifier ๐Ÿ”
65
 
66
- Automatically classify code comments into quality categories to improve code documentation and review processes.
67
-
68
- ## ๐ŸŽฏ Model Description
69
-
70
- This fine-tuned DistilBERT model analyzes code comments and classifies them into **4 quality categories**:
71
 
72
- | Category | Precision | Recall | Description |
73
- |----------|-----------|--------|-------------|
74
- | ๐ŸŒŸ **Excellent** | 100% | 100% | Clear, comprehensive, highly informative comments with context |
75
- | โœ… **Helpful** | 88.9% | 100% | Good comments that add value but could be more detailed |
76
- | โš ๏ธ **Unclear** | 100% | 79.2% | Vague, confusing, or uninformative comments |
77
- | ๐Ÿšซ **Outdated** | 92.3% | 100% | Deprecated, obsolete, or TODO comments |
78
 
79
- ### ๐Ÿ“Š Overall Performance
 
 
 
 
80
 
81
- - **Accuracy**: 94.85%
82
- - **F1 Score**: 94.68%
83
- - *๐Ÿš€ Quick Start
84
 
85
- ### Using Transformers Pipeline (Easiest)
86
 
87
- ```python
88
- from transformers import pipeline
89
-
90
- # Load the classifier
91
- classifier = pipeline("text-classification", model="Snaseem2026/code-comment-classifier")
92
-
93
- # Classify comments
94
- comments = [
95
- "This function uses dynamic programming for O(n) time complexity",
96
- "does stuff",
97
- "DEPRECATED: use new_function() instead"
98
- ]
99
-
100
- results = classifier(comments)
101
- for comment, result in zip(comments, results):
102
- print(f"{comment}: {result['label']} ({result['score']:.2%} confidence)")
103
  ```
104
 
105
- ### Manual Usage with Transformers
106
 
107
  ```python
108
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
109
  import torch
110
 
111
- # Load model and tokenizer
112
- mod๐Ÿ’ก Use Cases
113
-
114
- ### 1. **Code Review Automation**
115
- Automatically flag low-quality comments during pull request reviews:
116
- ```python
117
- def check_pr_comments(file_comments):
118
- classifier = pipeline("text-classification", model="Snaseem2026/code-comment-classifier")
119
- results = classifier(file_comments)
120
- return [c for c, r in zip(file_comments, results) if r['label'] in ['unclear', 'outdated']]
121
- ```
122
 
123
- ### 2. **Documentation Quality Audits**
124
- Scan codebases to identify documentation that needs improvement.
125
-
126
- ### 3. **Developer Education**
127
- Help developers learn what constitutes good documentation practices.
128
-
129
- ### 4. **IDE Integration**
130
- Provide real-time feedback on comment quality while coding.
131
-
132
- ### 5. **Technical Debt Analysis**
133
- Identify outdated comments and TODOs that need addressing.
134
-
135
- ## ๐Ÿ‹๏ธ Training Details
136
-
137
- ### Model Architecture
138
- - **Base Model**: [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased)
139
- - **Parameters**: 66.96 million
140
- - **Model Type**: Sequence Classification
141
- - **Framework**: PyTorch + Hugging Face Transformers
142
-
143
- ### Training Data
144
- - **Dataset Size**: 970 samples (776 train, 97 validation, 97 test)
145
- - **Data Source**: Synthetic code comments
146
- - **Classes**: 4 (balanced distribution)
147
- - **Language**: English
148
-
149
- ### Training Hyperparameters
150
- - **Epochs**: 3
151
- - **Batch Size**: 16 (train), 32 (eval)
152
- - **Learning Rate**: 2e-5
153
- - **Optimizer**: AdamW
154
- - **Weight Decay**: 0.01
155
- - **Warmup Steps**: 500
156
- - **Max Sequence Length**: 512 tokenselpful", "unclear", "outdated"]
157
- print(f"Quality: {labels[predicted_class]} (confidence: {confidence:.2%})")
158
- ```
159
 
160
- ### Batch Processing
161
-
162
- ```python
163
- from transformers import pipeline
164
 
165
- classifier = pipeline("text-classification", model="Snaseem2026/code-comment-classifier")
 
 
166
 
167
- comments = [
168
- "Implements binary search with O(log n) time complexity",
169
- "TODO fix later",
170
- "Handles user authentication",
171
- ๐Ÿ“ˆ Evaluation Results
172
 
173
- ### Test Set Performance (97 samples)
174
 
 
 
175
  ```
176
- precision recall f1-score support
177
 
178
- excellent 1.0000 1.0000 1.0000 25
179
- helpful 0.8889 1.0000 0.9412 24
180
- unclear 1.0000 0.7917 0.8837 24
181
- outdated 0.9231 1.0000 0.9600 24
182
 
183
- accuracy 0.9485 97
184
- macro avg 0.9530 0.9479 0.9462 97
185
- weighted avg 0.9535 0.9485 0.9468 97
186
  ```
187
 
188
- ### Key Findings
189
- - โœจ **Perfect classification** of excellent comments (100% precision & recall)
190
- - ๐ŸŽฏ **Zero false negatives** for helpful and outdated comments
191
- - โš ๏ธ Slight challenge distinguishing unclear comments from other categories
192
- - ๐Ÿ“Š Strong overall performance with 94.85% accuracy
193
-
194
- ## โš ๏ธ Limitations
195
-
196
- 1. **Synthetic Training Data**: Model trained on synthetic examples; may require fine-tuning for specific domains (e.g., scientific computing, embedded systems)
197
- 2. **English Only**: Currently supports English code comments only
198
- 3. **No Code Context**: Evaluates comments in isolation without analyzing the actual code
199
- 4. **Subjectivity**: Comment quality is inherently subjective; model reflects patterns in training data
200
- 5. **Short Comments**: May struggle with very short comments (< 3 words)
201
 
202
- ## ๐ŸŽฏ Intended Use
 
 
 
 
203
 
204
- ### Recommended Use
205
- - Supplementary tool in code review automation
206
- - Documentation quality auditing
207
- - Developer education and training
208
- - IDE plugins for real-time feedback
209
 
210
- ### Not Recommended
211
- - Sole decision-maker for code quality
212
- - Production-critical systems without human oversight
213
- - Evaluating non-English comments
214
- - Analyzing code quality (only evaluates comments)
215
 
216
- ## ๐Ÿ”ง How to Improve Performance
217
 
218
- ### Fine-tune on Your Domain
219
- ```python
220
- from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments
221
-
222
- # Load the pre-trained model
223
- model = AutoModelForSequenceClassification.from_pretrained("Snaseem2026/code-comment-classifier")
224
-
225
- # Fine-tune on your domain-specific data
226
- training_args = TrainingArguments(
227
- output_dir="./fine_tuned_model",
228
- learning_rate=1e-5, # Lower learning rate for fine-tuning
229
- num_train_epochs=2,
230
- per_device_train_batch_size=8,
231
- )
232
-
233
- trainer = Trainer(
234
- model=model,
235
- args=training_args,
236
- train_dataset=your_dataset,
237
- )
238
- trainer.train()
239
  ```
240
-
241
- ## ๐Ÿ“ License
242
-
243
- **MIT License** - Free to use, modify, and distribute for commercial and non-commercial purposes.
244
-
245
- ## ๐Ÿ™ Acknowledgments
246
-
247
- - Built with [๐Ÿค— Transformers](https://huggingface.co/transformers/)
248
- - Base model: [DistilBERT](https://huggingface.co/distilbert-base-uncased) by Hugging Face
249
- - Inspired by the need for better code documentation practices in software development
250
-
251
- ## ๐Ÿ“š Citation
252
-
253
- If you use this model in your research or application, please cite:
254
-
255
- ```bibtex
256
- @misc{code-comment-classifier-2026,
257
- author = {Naseem, Sharyar},
258
- title = {Code Comment Quality Classifier},
259
- year = {2026},
260
- publisher = {Hugging Face},
261
- journal = {Hugging Face Model Hub},
262
- howpublished = {\url{https://huggingface.co/Snaseem2026/code-comment-classifier}}
263
- }
264
  ```
265
 
266
- ## ๐Ÿ“ง Contact
267
-
268
- For questions, suggestions, or collaboration:
269
- - ๐Ÿค— Hugging Face: [@Snaseem2026](https://huggingface.co/Snaseem2026)
270
- - ๐Ÿ“ซ Issues: Report on the model's discussion tab
271
-
272
- ---
273
-
274
- <div align="center">
275
-
276
- **Made with โค๏ธ for the developer community**
277
-
278
- [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
279
- [![Transformers](https://img.shields.io/badge/Transformers-4.35+-blue.svg)](https://github.com/huggingface/transformers)
280
- [![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
281
-
282
- [๐Ÿค— Model Hub](https://huggingface.co/Snaseem2026/code-comment-classifier) โ€ข [Report Issue](https://huggingface.co/Snaseem2026/code-comment-classifier/discussions)
283
 
284
- </div>
 
 
 
 
285
 
286
- ## Limitations
287
-
288
- - Trained on synthetic data; may require fine-tuning for specific domains
289
- - English comments only
290
- - Evaluates comments in isolation without code context
291
- - Comment quality assessment is subjective
292
-
293
- ## Intended Use
294
 
295
- This model is designed for **educational and productivity purposes**. Use as a supplementary tool in code review processes, not as a replacement for human judgment.
296
 
297
- ## License
298
 
299
- MIT License - Free to use, modify, and distribute.
 
300
 
301
- ## Citation
302
 
303
- ```bibtex
304
- @misc{code-comment-classifier-2026,
305
- title={Code Comment Quality Classifier},
306
- year={2026},
307
- publisher={Hugging Face},
308
- howpublished={\url{https://huggingface.co/your-username/code-comment-classifier}}
309
- }
310
- ```
311
 
312
  ---
313
 
314
- Built with [Hugging Face Transformers](https://huggingface.co/transformers/) โ€ข Base model: [DistilBERT](https://huggingface.co/distilbert-base-uncased)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Code Comment Quality Classifier ๐Ÿ”
2
 
3
+ A machine learning model that automatically classifies code comments into quality categories to help improve code documentation and review processes.
 
 
 
 
4
 
5
+ ## ๐ŸŽฏ What Does This Model Do?
 
 
 
 
 
6
 
7
+ This model analyzes code comments and classifies them into four categories:
8
+ - **Excellent**: Clear, comprehensive, and highly informative comments
9
+ - **Helpful**: Good comments that add value but could be improved
10
+ - **Unclear**: Vague or confusing comments that don't add much value
11
+ - **Outdated**: Comments that may no longer reflect the current code
12
 
13
+ ## ๐Ÿš€ Quick Start
 
 
14
 
15
+ ### Installation
16
 
17
+ ```bash
18
+ pip install -r requirements.txt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ```
20
 
21
+ ### Using the Model
22
 
23
  ```python
24
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
25
  import torch
26
 
27
+ # Load the model and tokenizer
28
+ model_name = "Snaseem2026/code-comment-classifier"
29
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
30
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
 
 
 
 
 
 
 
31
 
32
+ # Classify a comment
33
+ comment = "This function calculates the fibonacci sequence using dynamic programming"
34
+ inputs = tokenizer(comment, return_tensors="pt", truncation=True, max_length=512)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ with torch.no_grad():
37
+ outputs = model(**inputs)
38
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
39
+ predicted_class = torch.argmax(predictions, dim=-1).item()
40
 
41
+ labels = ["excellent", "helpful", "unclear", "outdated"]
42
+ print(f"Comment quality: {labels[predicted_class]}")
43
+ ```
44
 
45
+ ## ๐Ÿ‹๏ธ Training the Model
 
 
 
 
46
 
47
+ To train the model on your own data:
48
 
49
+ ```bash
50
+ python train.py --config config.yaml
51
  ```
 
52
 
53
+ To generate synthetic training data:
 
 
 
54
 
55
+ ```bash
56
+ python scripts/generate_data.py
 
57
  ```
58
 
59
+ ## ๐Ÿ“Š Model Details
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
+ - **Base Model**: DistilBERT (distilbert-base-uncased)
62
+ - **Task**: Multi-class text classification
63
+ - **Classes**: 4 (excellent, helpful, unclear, outdated)
64
+ - **Training Data**: Synthetic code comments with quality labels
65
+ - **License**: MIT
66
 
67
+ ## ๐ŸŽ“ Use Cases
 
 
 
 
68
 
69
+ - **Code Review Automation**: Automatically flag low-quality comments during PR reviews
70
+ - **Documentation Quality Checks**: Audit codebases for documentation quality
71
+ - **Developer Education**: Help developers learn what makes good code comments
72
+ - **IDE Integration**: Real-time feedback on comment quality while coding
 
73
 
74
+ ## ๐Ÿ“ Project Structure
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  ```
77
+ .
78
+ โ”œโ”€โ”€ README.md
79
+ โ”œโ”€โ”€ LICENSE
80
+ โ”œโ”€โ”€ requirements.txt
81
+ โ”œโ”€โ”€ config.yaml
82
+ โ”œโ”€โ”€ train.py # Main training script
83
+ โ”œโ”€โ”€ inference.py # Inference script
84
+ โ”œโ”€โ”€ src/
85
+ โ”‚ โ”œโ”€โ”€ __init__.py
86
+ โ”‚ โ”œโ”€โ”€ data_loader.py # Data loading utilities
87
+ โ”‚ โ”œโ”€โ”€ model.py # Model definition
88
+ โ”‚ โ””โ”€โ”€ utils.py # Helper functions
89
+ โ”œโ”€โ”€ scripts/
90
+ โ”‚ โ”œโ”€โ”€ generate_data.py # Generate synthetic training data
91
+ โ”‚ โ”œโ”€โ”€ evaluate.py # Evaluation script
92
+ โ”‚ โ””โ”€โ”€ upload_to_hub.py # Upload model to Hugging Face Hub
93
+ โ”œโ”€โ”€ data/
94
+ โ”‚ โ””โ”€โ”€ .gitkeep
95
+ โ””โ”€โ”€ MODEL_CARD.md # Hugging Face model card
 
 
 
 
 
96
  ```
97
 
98
+ ## ๐Ÿค Contributing
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
+ This is an open-source project! Contributions are welcome. Please feel free to:
101
+ - Report bugs or issues
102
+ - Suggest new features
103
+ - Submit pull requests
104
+ - Improve documentation
105
 
106
+ ## ๐Ÿ“ License
 
 
 
 
 
 
 
107
 
108
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
109
 
110
+ ## ๐Ÿ™ Acknowledgments
111
 
112
+ - Built with [Hugging Face Transformers](https://huggingface.co/transformers/)
113
+ - Base model: [DistilBERT](https://huggingface.co/distilbert-base-uncased)
114
 
115
+ ## ๐Ÿ“ฎ Contact
116
 
117
+ For questions or feedback, please open an issue on the GitHub repository or reach out on Hugging Face.
 
 
 
 
 
 
 
118
 
119
  ---
120
 
121
+ **Note**: This model is designed for educational and productivity purposes. Always review automated suggestions with human judgment.