Upload folder using huggingface_hub
Browse files- scripts/evaluate.py +205 -0
- scripts/generate_data.py +190 -0
- scripts/publish_to_hub.py +247 -0
- scripts/upload_to_hub.py +134 -0
scripts/evaluate.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Evaluation script for trained model with comprehensive analysis
|
| 3 |
+
"""
|
| 4 |
+
import argparse
|
| 5 |
+
import sys
|
| 6 |
+
import os
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
|
| 10 |
+
|
| 11 |
+
# Add parent directory to path
|
| 12 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
| 13 |
+
|
| 14 |
+
from src import (
|
| 15 |
+
load_config,
|
| 16 |
+
compute_metrics_factory,
|
| 17 |
+
plot_confusion_matrix,
|
| 18 |
+
print_classification_report
|
| 19 |
+
)
|
| 20 |
+
from src.data_loader import prepare_datasets_for_training
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def analyze_errors(
|
| 24 |
+
test_dataset,
|
| 25 |
+
predictions: np.ndarray,
|
| 26 |
+
labels: np.ndarray,
|
| 27 |
+
id2label: dict,
|
| 28 |
+
tokenizer,
|
| 29 |
+
top_n: int = 10
|
| 30 |
+
) -> pd.DataFrame:
|
| 31 |
+
"""
|
| 32 |
+
Analyze misclassified examples.
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
test_dataset: Test dataset
|
| 36 |
+
predictions: Predicted labels
|
| 37 |
+
labels: True labels
|
| 38 |
+
id2label: Label mapping
|
| 39 |
+
tokenizer: Tokenizer to decode text
|
| 40 |
+
top_n: Number of examples to show per error type
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
DataFrame with error analysis
|
| 44 |
+
"""
|
| 45 |
+
errors = []
|
| 46 |
+
for i, (pred, true_label) in enumerate(zip(predictions, labels)):
|
| 47 |
+
if pred != true_label:
|
| 48 |
+
# Decode the comment (approximate, as original text is removed)
|
| 49 |
+
# Note: This is a limitation - we'd need to keep original text
|
| 50 |
+
errors.append({
|
| 51 |
+
'index': i,
|
| 52 |
+
'true_label': id2label[true_label],
|
| 53 |
+
'predicted_label': id2label[pred],
|
| 54 |
+
'error_type': f"{id2label[true_label]} -> {id2label[pred]}"
|
| 55 |
+
})
|
| 56 |
+
|
| 57 |
+
error_df = pd.DataFrame(errors)
|
| 58 |
+
if len(error_df) > 0:
|
| 59 |
+
print(f"\nError Analysis:")
|
| 60 |
+
print(f"Total errors: {len(error_df)}")
|
| 61 |
+
print(f"\nError type distribution:")
|
| 62 |
+
print(error_df['error_type'].value_counts())
|
| 63 |
+
|
| 64 |
+
return error_df
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def evaluate_model(
|
| 68 |
+
model_path: str,
|
| 69 |
+
config_path: str = "config.yaml",
|
| 70 |
+
save_plots: bool = True
|
| 71 |
+
):
|
| 72 |
+
"""
|
| 73 |
+
Evaluate trained model on test set with comprehensive analysis.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
model_path: Path to the trained model
|
| 77 |
+
config_path: Path to configuration file
|
| 78 |
+
save_plots: Whether to save visualization plots
|
| 79 |
+
"""
|
| 80 |
+
print("=" * 60)
|
| 81 |
+
print("Model Evaluation")
|
| 82 |
+
print("=" * 60)
|
| 83 |
+
|
| 84 |
+
# Load config
|
| 85 |
+
config = load_config(config_path)
|
| 86 |
+
|
| 87 |
+
# Create output directory
|
| 88 |
+
output_dir = config['training'].get('output_dir', './results')
|
| 89 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 90 |
+
|
| 91 |
+
# Load datasets
|
| 92 |
+
print("\n[1/5] Loading datasets...")
|
| 93 |
+
tokenized_datasets, label2id, id2label, _ = prepare_datasets_for_training(config_path)
|
| 94 |
+
test_dataset = tokenized_datasets['test']
|
| 95 |
+
print(f"✓ Test samples: {len(test_dataset)}")
|
| 96 |
+
|
| 97 |
+
# Load model and tokenizer
|
| 98 |
+
print("\n[2/5] Loading trained model...")
|
| 99 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 100 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 101 |
+
print(f"✓ Model loaded from {model_path}")
|
| 102 |
+
|
| 103 |
+
# Create trainer for evaluation
|
| 104 |
+
print("\n[3/5] Running evaluation...")
|
| 105 |
+
compute_metrics_fn = compute_metrics_factory(id2label)
|
| 106 |
+
trainer = Trainer(
|
| 107 |
+
model=model,
|
| 108 |
+
tokenizer=tokenizer,
|
| 109 |
+
compute_metrics=compute_metrics_fn
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# Get predictions
|
| 113 |
+
predictions_output = trainer.predict(test_dataset)
|
| 114 |
+
predictions = np.argmax(predictions_output.predictions, axis=1)
|
| 115 |
+
labels = predictions_output.label_ids
|
| 116 |
+
|
| 117 |
+
# Print metrics
|
| 118 |
+
print("\n[4/5] Computing detailed metrics...")
|
| 119 |
+
print("\n" + "=" * 60)
|
| 120 |
+
print("Test Set Results")
|
| 121 |
+
print("=" * 60)
|
| 122 |
+
|
| 123 |
+
metrics = predictions_output.metrics
|
| 124 |
+
|
| 125 |
+
# Overall metrics
|
| 126 |
+
print("\nOverall Metrics:")
|
| 127 |
+
overall_metrics = ['accuracy', 'f1_weighted', 'f1_macro', 'precision_weighted', 'recall_weighted']
|
| 128 |
+
for metric in overall_metrics:
|
| 129 |
+
key = f'test_{metric}'
|
| 130 |
+
if key in metrics:
|
| 131 |
+
print(f" {metric.replace('_', ' ').title()}: {metrics[key]:.4f}")
|
| 132 |
+
|
| 133 |
+
# Per-class metrics
|
| 134 |
+
print("\nPer-Class Metrics:")
|
| 135 |
+
label_names = [id2label[i] for i in range(len(id2label))]
|
| 136 |
+
for label_name in label_names:
|
| 137 |
+
precision_key = f'test_precision_{label_name}'
|
| 138 |
+
recall_key = f'test_recall_{label_name}'
|
| 139 |
+
f1_key = f'test_f1_{label_name}'
|
| 140 |
+
if precision_key in metrics:
|
| 141 |
+
print(f"\n {label_name.upper()}:")
|
| 142 |
+
print(f" Precision: {metrics[precision_key]:.4f}")
|
| 143 |
+
print(f" Recall: {metrics[recall_key]:.4f}")
|
| 144 |
+
print(f" F1-Score: {metrics[f1_key]:.4f}")
|
| 145 |
+
print(f" Support: {metrics.get(f'test_support_{label_name}', 'N/A')}")
|
| 146 |
+
|
| 147 |
+
# Detailed classification report
|
| 148 |
+
print("\n" + "=" * 60)
|
| 149 |
+
print_classification_report(labels, predictions, label_names)
|
| 150 |
+
|
| 151 |
+
# Plot confusion matrix
|
| 152 |
+
print("\n[5/5] Generating visualizations...")
|
| 153 |
+
if save_plots:
|
| 154 |
+
plot_confusion_matrix(
|
| 155 |
+
labels,
|
| 156 |
+
predictions,
|
| 157 |
+
label_names,
|
| 158 |
+
save_path=os.path.join(output_dir, "confusion_matrix.png"),
|
| 159 |
+
normalize=False
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# Also save normalized version
|
| 163 |
+
plot_confusion_matrix(
|
| 164 |
+
labels,
|
| 165 |
+
predictions,
|
| 166 |
+
label_names,
|
| 167 |
+
save_path=os.path.join(output_dir, "confusion_matrix_normalized.png"),
|
| 168 |
+
normalize=True
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
# Error analysis
|
| 172 |
+
error_df = analyze_errors(test_dataset, predictions, labels, id2label, tokenizer)
|
| 173 |
+
if len(error_df) > 0 and save_plots:
|
| 174 |
+
error_path = os.path.join(output_dir, "error_analysis.csv")
|
| 175 |
+
error_df.to_csv(error_path, index=False)
|
| 176 |
+
print(f"✓ Error analysis saved to {error_path}")
|
| 177 |
+
|
| 178 |
+
print("\n" + "=" * 60)
|
| 179 |
+
print("Evaluation Complete! 🎉")
|
| 180 |
+
print("=" * 60)
|
| 181 |
+
print(f"\nResults saved to: {output_dir}")
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
if __name__ == "__main__":
|
| 185 |
+
parser = argparse.ArgumentParser(description="Evaluate trained model")
|
| 186 |
+
parser.add_argument(
|
| 187 |
+
"--model-path",
|
| 188 |
+
type=str,
|
| 189 |
+
default="./results/final_model",
|
| 190 |
+
help="Path to the trained model"
|
| 191 |
+
)
|
| 192 |
+
parser.add_argument(
|
| 193 |
+
"--config",
|
| 194 |
+
type=str,
|
| 195 |
+
default="config.yaml",
|
| 196 |
+
help="Path to configuration file"
|
| 197 |
+
)
|
| 198 |
+
parser.add_argument(
|
| 199 |
+
"--no-plots",
|
| 200 |
+
action="store_true",
|
| 201 |
+
help="Skip generating visualization plots"
|
| 202 |
+
)
|
| 203 |
+
args = parser.parse_args()
|
| 204 |
+
|
| 205 |
+
evaluate_model(args.model_path, args.config, save_plots=not args.no_plots)
|
scripts/generate_data.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Generate synthetic training data for Code Comment Quality Classifier
|
| 3 |
+
"""
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import os
|
| 6 |
+
import random
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# Example comments for each category
|
| 10 |
+
EXCELLENT_COMMENTS = [
|
| 11 |
+
"This function calculates the Fibonacci sequence using dynamic programming to avoid redundant calculations. Time complexity: O(n), Space complexity: O(n)",
|
| 12 |
+
"Validates user input against SQL injection attacks using parameterized queries. Returns True if safe, False otherwise. Raises ValueError for invalid input types.",
|
| 13 |
+
"Binary search implementation for sorted arrays. Uses divide-and-conquer approach. Params: arr (sorted list), target (value). Returns: index or -1 if not found.",
|
| 14 |
+
"Implements the Singleton pattern to ensure only one instance of DatabaseConnection exists. Thread-safe using double-checked locking.",
|
| 15 |
+
"Parses JSON configuration file and validates against schema. Handles nested objects and arrays. Raises ConfigurationError if validation fails.",
|
| 16 |
+
"Asynchronous HTTP request handler with retry logic and exponential backoff. Max retries: 3. Timeout: 30s. Returns: Response object or None on failure.",
|
| 17 |
+
"Generates secure random tokens for authentication using CSPRNG. Length: 32 bytes. Returns: hex-encoded string. Used in password reset flows.",
|
| 18 |
+
"Custom hook that debounces state updates to prevent excessive re-renders. Delay: configurable ms. Returns: debounced value and setter function.",
|
| 19 |
+
"Optimized matrix multiplication using Strassen's algorithm. Suitable for large matrices (n > 64). Time complexity: O(n^2.807).",
|
| 20 |
+
"Decorator that caches function results with LRU eviction policy. Max size: 128 entries. Thread-safe. Improves performance for expensive computations.",
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
HELPFUL_COMMENTS = [
|
| 24 |
+
"Calculates the sum of two numbers and returns the result",
|
| 25 |
+
"This function sorts the array in ascending order",
|
| 26 |
+
"Checks if the user is logged in before proceeding",
|
| 27 |
+
"Converts temperature from Celsius to Fahrenheit",
|
| 28 |
+
"Returns the current timestamp in UTC format",
|
| 29 |
+
"Validates email format using regex pattern",
|
| 30 |
+
"Fetches user data from the database by ID",
|
| 31 |
+
"Updates the UI when data changes",
|
| 32 |
+
"Handles file upload and saves to storage",
|
| 33 |
+
"Generates a random string of specified length",
|
| 34 |
+
"Removes duplicates from the list",
|
| 35 |
+
"Encrypts password before storing in database",
|
| 36 |
+
"Sends email notification to user",
|
| 37 |
+
"Formats date string for display",
|
| 38 |
+
"Calculates total price including tax",
|
| 39 |
+
]
|
| 40 |
+
|
| 41 |
+
UNCLEAR_COMMENTS = [
|
| 42 |
+
"does stuff",
|
| 43 |
+
"magic happens here",
|
| 44 |
+
"don't touch this",
|
| 45 |
+
"idk why this works but it does",
|
| 46 |
+
"temporary solution",
|
| 47 |
+
"quick fix",
|
| 48 |
+
"handles things",
|
| 49 |
+
"processes data",
|
| 50 |
+
"important function",
|
| 51 |
+
"legacy code",
|
| 52 |
+
"weird edge case",
|
| 53 |
+
"not sure what this does",
|
| 54 |
+
"complicated logic",
|
| 55 |
+
"TODO",
|
| 56 |
+
"fix me",
|
| 57 |
+
"helper method",
|
| 58 |
+
"utility function",
|
| 59 |
+
"wrapper",
|
| 60 |
+
"handler",
|
| 61 |
+
"manager",
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
OUTDATED_COMMENTS = [
|
| 65 |
+
"DEPRECATED: Use the new API endpoint instead",
|
| 66 |
+
"This will be removed in version 2.0",
|
| 67 |
+
"TODO: Refactor this to use async/await",
|
| 68 |
+
"Old implementation - kept for backwards compatibility",
|
| 69 |
+
"NOTE: This approach is no longer recommended",
|
| 70 |
+
"FIXME: Memory leak issue - needs update",
|
| 71 |
+
"Uses legacy authentication system",
|
| 72 |
+
"WARNING: This method is obsolete",
|
| 73 |
+
"Replaced by getUserInfo() in v1.5",
|
| 74 |
+
"Temporary workaround - pending proper fix",
|
| 75 |
+
"DEPRECATED: Direct database access - use ORM instead",
|
| 76 |
+
"Old validation logic - update to new schema",
|
| 77 |
+
"Uses outdated library - migrate to modern alternative",
|
| 78 |
+
"This was for Python 2 compatibility",
|
| 79 |
+
"FIXME: Security vulnerability - needs immediate update",
|
| 80 |
+
]
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def generate_variations(base_comments: list, num_variations: int = 5) -> list:
|
| 84 |
+
"""Generate variations of base comments to increase dataset size."""
|
| 85 |
+
variations = []
|
| 86 |
+
|
| 87 |
+
prefixes = ["", "Note: ", "Important: ", "Info: ", ""]
|
| 88 |
+
suffixes = ["", ".", "...", " // end", ""]
|
| 89 |
+
|
| 90 |
+
for comment in base_comments:
|
| 91 |
+
variations.append(comment)
|
| 92 |
+
for _ in range(num_variations - 1):
|
| 93 |
+
prefix = random.choice(prefixes)
|
| 94 |
+
suffix = random.choice(suffixes)
|
| 95 |
+
varied = f"{prefix}{comment}{suffix}"
|
| 96 |
+
variations.append(varied)
|
| 97 |
+
|
| 98 |
+
return variations
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def generate_dataset(output_path: str = "./data/comments.csv", samples_per_class: int = 250):
|
| 102 |
+
"""
|
| 103 |
+
Generate synthetic training dataset.
|
| 104 |
+
|
| 105 |
+
Args:
|
| 106 |
+
output_path: Path to save the CSV file
|
| 107 |
+
samples_per_class: Number of samples to generate per class
|
| 108 |
+
"""
|
| 109 |
+
print("=" * 60)
|
| 110 |
+
print("Generating Synthetic Training Data")
|
| 111 |
+
print("=" * 60)
|
| 112 |
+
|
| 113 |
+
# Create data directory if it doesn't exist
|
| 114 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
| 115 |
+
|
| 116 |
+
# Generate variations
|
| 117 |
+
print("\nGenerating comment variations...")
|
| 118 |
+
excellent_samples = generate_variations(EXCELLENT_COMMENTS, samples_per_class // len(EXCELLENT_COMMENTS))
|
| 119 |
+
helpful_samples = generate_variations(HELPFUL_COMMENTS, samples_per_class // len(HELPFUL_COMMENTS))
|
| 120 |
+
unclear_samples = generate_variations(UNCLEAR_COMMENTS, samples_per_class // len(UNCLEAR_COMMENTS))
|
| 121 |
+
outdated_samples = generate_variations(OUTDATED_COMMENTS, samples_per_class // len(OUTDATED_COMMENTS))
|
| 122 |
+
|
| 123 |
+
# Ensure we have exactly samples_per_class for each
|
| 124 |
+
excellent_samples = excellent_samples[:samples_per_class]
|
| 125 |
+
helpful_samples = helpful_samples[:samples_per_class]
|
| 126 |
+
unclear_samples = unclear_samples[:samples_per_class]
|
| 127 |
+
outdated_samples = outdated_samples[:samples_per_class]
|
| 128 |
+
|
| 129 |
+
# Create DataFrame
|
| 130 |
+
data = {
|
| 131 |
+
'comment': (
|
| 132 |
+
excellent_samples +
|
| 133 |
+
helpful_samples +
|
| 134 |
+
unclear_samples +
|
| 135 |
+
outdated_samples
|
| 136 |
+
),
|
| 137 |
+
'label': (
|
| 138 |
+
['excellent'] * len(excellent_samples) +
|
| 139 |
+
['helpful'] * len(helpful_samples) +
|
| 140 |
+
['unclear'] * len(unclear_samples) +
|
| 141 |
+
['outdated'] * len(outdated_samples)
|
| 142 |
+
)
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
df = pd.DataFrame(data)
|
| 146 |
+
|
| 147 |
+
# Shuffle the dataset
|
| 148 |
+
df = df.sample(frac=1, random_state=42).reset_index(drop=True)
|
| 149 |
+
|
| 150 |
+
# Save to CSV
|
| 151 |
+
df.to_csv(output_path, index=False)
|
| 152 |
+
|
| 153 |
+
print(f"\n✓ Dataset generated successfully!")
|
| 154 |
+
print(f"✓ Total samples: {len(df)}")
|
| 155 |
+
print(f"✓ Saved to: {output_path}")
|
| 156 |
+
|
| 157 |
+
print("\nClass distribution:")
|
| 158 |
+
print(df['label'].value_counts().sort_index())
|
| 159 |
+
|
| 160 |
+
print("\nSample comments:")
|
| 161 |
+
print("-" * 60)
|
| 162 |
+
for label in ['excellent', 'helpful', 'unclear', 'outdated']:
|
| 163 |
+
sample = df[df['label'] == label].iloc[0]['comment']
|
| 164 |
+
print(f"\n[{label.upper()}]")
|
| 165 |
+
print(f" {sample}")
|
| 166 |
+
|
| 167 |
+
print("\n" + "=" * 60)
|
| 168 |
+
print("Data generation complete! 🎉")
|
| 169 |
+
print("=" * 60)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
if __name__ == "__main__":
|
| 173 |
+
import argparse
|
| 174 |
+
|
| 175 |
+
parser = argparse.ArgumentParser(description="Generate synthetic training data")
|
| 176 |
+
parser.add_argument(
|
| 177 |
+
"--output",
|
| 178 |
+
type=str,
|
| 179 |
+
default="./data/comments.csv",
|
| 180 |
+
help="Output path for the CSV file"
|
| 181 |
+
)
|
| 182 |
+
parser.add_argument(
|
| 183 |
+
"--samples-per-class",
|
| 184 |
+
type=int,
|
| 185 |
+
default=250,
|
| 186 |
+
help="Number of samples to generate per class"
|
| 187 |
+
)
|
| 188 |
+
args = parser.parse_args()
|
| 189 |
+
|
| 190 |
+
generate_dataset(args.output, args.samples_per_class)
|
scripts/publish_to_hub.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Comprehensive script to publish model and codebase to Hugging Face Hub
|
| 3 |
+
"""
|
| 4 |
+
import argparse
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from huggingface_hub import HfApi, create_repo, upload_folder, upload_file
|
| 9 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 10 |
+
|
| 11 |
+
# Add parent directory to path
|
| 12 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def publish_to_hub(
|
| 16 |
+
model_path: str,
|
| 17 |
+
repo_id: str,
|
| 18 |
+
private: bool = False,
|
| 19 |
+
upload_code: bool = True,
|
| 20 |
+
upload_model: bool = True
|
| 21 |
+
):
|
| 22 |
+
"""
|
| 23 |
+
Publish model and codebase to Hugging Face Hub.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
model_path: Path to the trained model
|
| 27 |
+
repo_id: Full repository ID (e.g., "username/repo-name")
|
| 28 |
+
private: Whether to make the repository private
|
| 29 |
+
upload_code: Whether to upload code files
|
| 30 |
+
upload_model: Whether to upload the model
|
| 31 |
+
"""
|
| 32 |
+
print("=" * 70)
|
| 33 |
+
print("Publishing to Hugging Face Hub")
|
| 34 |
+
print("=" * 70)
|
| 35 |
+
print(f"\nRepository: {repo_id}")
|
| 36 |
+
print(f"Private: {private}")
|
| 37 |
+
print(f"Upload Model: {upload_model}")
|
| 38 |
+
print(f"Upload Code: {upload_code}")
|
| 39 |
+
|
| 40 |
+
api = HfApi()
|
| 41 |
+
|
| 42 |
+
# Create repository
|
| 43 |
+
print("\n[1/4] Creating/verifying repository...")
|
| 44 |
+
try:
|
| 45 |
+
create_repo(
|
| 46 |
+
repo_id=repo_id,
|
| 47 |
+
repo_type="model",
|
| 48 |
+
exist_ok=True,
|
| 49 |
+
private=private
|
| 50 |
+
)
|
| 51 |
+
print(f"✓ Repository ready: {repo_id}")
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f"✗ Error creating repository: {e}")
|
| 54 |
+
print("\nMake sure you're logged in:")
|
| 55 |
+
print(" huggingface-cli login")
|
| 56 |
+
return False
|
| 57 |
+
|
| 58 |
+
# Upload model and tokenizer
|
| 59 |
+
if upload_model:
|
| 60 |
+
print("\n[2/4] Uploading model and tokenizer...")
|
| 61 |
+
try:
|
| 62 |
+
if not os.path.exists(model_path):
|
| 63 |
+
print(f"✗ Model path not found: {model_path}")
|
| 64 |
+
print(" Skipping model upload. You can upload it later.")
|
| 65 |
+
else:
|
| 66 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 67 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 68 |
+
|
| 69 |
+
model.push_to_hub(repo_id)
|
| 70 |
+
tokenizer.push_to_hub(repo_id)
|
| 71 |
+
print("✓ Model and tokenizer uploaded")
|
| 72 |
+
except Exception as e:
|
| 73 |
+
print(f"✗ Error uploading model: {e}")
|
| 74 |
+
print(" You can upload the model separately later.")
|
| 75 |
+
else:
|
| 76 |
+
print("\n[2/4] Skipping model upload (--no-model flag)")
|
| 77 |
+
|
| 78 |
+
# Upload code files
|
| 79 |
+
if upload_code:
|
| 80 |
+
print("\n[3/4] Uploading code files...")
|
| 81 |
+
try:
|
| 82 |
+
repo_root = Path(__file__).parent.parent
|
| 83 |
+
|
| 84 |
+
# Files to upload
|
| 85 |
+
code_files = [
|
| 86 |
+
"train.py",
|
| 87 |
+
"inference.py",
|
| 88 |
+
"config.yaml",
|
| 89 |
+
"requirements.txt",
|
| 90 |
+
"setup.py",
|
| 91 |
+
"README.md",
|
| 92 |
+
"MODEL_CARD.md",
|
| 93 |
+
"LICENSE",
|
| 94 |
+
".gitignore"
|
| 95 |
+
]
|
| 96 |
+
|
| 97 |
+
# Directories to upload
|
| 98 |
+
code_dirs = [
|
| 99 |
+
"src",
|
| 100 |
+
"scripts"
|
| 101 |
+
]
|
| 102 |
+
|
| 103 |
+
uploaded_count = 0
|
| 104 |
+
|
| 105 |
+
# Upload individual files
|
| 106 |
+
for file_name in code_files:
|
| 107 |
+
file_path = repo_root / file_name
|
| 108 |
+
if file_path.exists():
|
| 109 |
+
try:
|
| 110 |
+
upload_file(
|
| 111 |
+
path_or_fileobj=str(file_path),
|
| 112 |
+
path_in_repo=file_name,
|
| 113 |
+
repo_id=repo_id,
|
| 114 |
+
repo_type="model"
|
| 115 |
+
)
|
| 116 |
+
print(f" ✓ Uploaded {file_name}")
|
| 117 |
+
uploaded_count += 1
|
| 118 |
+
except Exception as e:
|
| 119 |
+
print(f" ⚠ Could not upload {file_name}: {e}")
|
| 120 |
+
|
| 121 |
+
# Upload directories
|
| 122 |
+
for dir_name in code_dirs:
|
| 123 |
+
dir_path = repo_root / dir_name
|
| 124 |
+
if dir_path.exists() and dir_path.is_dir():
|
| 125 |
+
try:
|
| 126 |
+
upload_folder(
|
| 127 |
+
folder_path=str(dir_path),
|
| 128 |
+
path_in_repo=dir_name,
|
| 129 |
+
repo_id=repo_id,
|
| 130 |
+
repo_type="model",
|
| 131 |
+
ignore_patterns=["__pycache__", "*.pyc", ".DS_Store"]
|
| 132 |
+
)
|
| 133 |
+
print(f" ✓ Uploaded {dir_name}/")
|
| 134 |
+
uploaded_count += 1
|
| 135 |
+
except Exception as e:
|
| 136 |
+
print(f" ⚠ Could not upload {dir_name}/: {e}")
|
| 137 |
+
|
| 138 |
+
print(f"\n✓ Uploaded {uploaded_count} code files/directories")
|
| 139 |
+
|
| 140 |
+
except Exception as e:
|
| 141 |
+
print(f"✗ Error uploading code: {e}")
|
| 142 |
+
else:
|
| 143 |
+
print("\n[3/4] Skipping code upload (--no-code flag)")
|
| 144 |
+
|
| 145 |
+
# Final summary
|
| 146 |
+
print("\n[4/4] Publishing complete!")
|
| 147 |
+
print("\n" + "=" * 70)
|
| 148 |
+
print("Success! 🎉")
|
| 149 |
+
print("=" * 70)
|
| 150 |
+
print(f"\nYour model is now available at:")
|
| 151 |
+
print(f"https://huggingface.co/{repo_id}")
|
| 152 |
+
|
| 153 |
+
if upload_model:
|
| 154 |
+
print("\nTo use your model:")
|
| 155 |
+
print(f"""
|
| 156 |
+
from transformers import pipeline
|
| 157 |
+
|
| 158 |
+
classifier = pipeline("text-classification", model="{repo_id}")
|
| 159 |
+
|
| 160 |
+
# Classify a comment
|
| 161 |
+
result = classifier("This function uses dynamic programming for O(n) time complexity")
|
| 162 |
+
print(result)
|
| 163 |
+
""")
|
| 164 |
+
|
| 165 |
+
return True
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
if __name__ == "__main__":
|
| 169 |
+
parser = argparse.ArgumentParser(
|
| 170 |
+
description="Publish model and codebase to Hugging Face Hub",
|
| 171 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 172 |
+
epilog="""
|
| 173 |
+
Examples:
|
| 174 |
+
# Publish everything (model + code)
|
| 175 |
+
python scripts/publish_to_hub.py --repo-id Snaseem2026/code-comment-classifier
|
| 176 |
+
|
| 177 |
+
# Publish only code (no model)
|
| 178 |
+
python scripts/publish_to_hub.py --repo-id Snaseem2026/code-comment-classifier --no-model
|
| 179 |
+
|
| 180 |
+
# Publish only model (no code)
|
| 181 |
+
python scripts/publish_to_hub.py --repo-id Snaseem2026/code-comment-classifier --no-code
|
| 182 |
+
|
| 183 |
+
# Private repository
|
| 184 |
+
python scripts/publish_to_hub.py --repo-id Snaseem2026/code-comment-classifier --private
|
| 185 |
+
"""
|
| 186 |
+
)
|
| 187 |
+
parser.add_argument(
|
| 188 |
+
"--model-path",
|
| 189 |
+
type=str,
|
| 190 |
+
default="./results/final_model",
|
| 191 |
+
help="Path to the trained model"
|
| 192 |
+
)
|
| 193 |
+
parser.add_argument(
|
| 194 |
+
"--repo-id",
|
| 195 |
+
type=str,
|
| 196 |
+
default="Snaseem2026/code-comment-classifier",
|
| 197 |
+
help="Full repository ID (e.g., 'username/repo-name')"
|
| 198 |
+
)
|
| 199 |
+
parser.add_argument(
|
| 200 |
+
"--private",
|
| 201 |
+
action="store_true",
|
| 202 |
+
help="Make the repository private"
|
| 203 |
+
)
|
| 204 |
+
parser.add_argument(
|
| 205 |
+
"--no-code",
|
| 206 |
+
action="store_true",
|
| 207 |
+
help="Skip uploading code files"
|
| 208 |
+
)
|
| 209 |
+
parser.add_argument(
|
| 210 |
+
"--no-model",
|
| 211 |
+
action="store_true",
|
| 212 |
+
help="Skip uploading model files"
|
| 213 |
+
)
|
| 214 |
+
parser.add_argument(
|
| 215 |
+
"--yes",
|
| 216 |
+
action="store_true",
|
| 217 |
+
help="Skip confirmation prompt"
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
args = parser.parse_args()
|
| 221 |
+
|
| 222 |
+
print("\n" + "=" * 70)
|
| 223 |
+
print("Hugging Face Hub Publishing")
|
| 224 |
+
print("=" * 70)
|
| 225 |
+
print("\nBefore publishing, make sure you:")
|
| 226 |
+
print("1. Have a Hugging Face account")
|
| 227 |
+
print("2. Are logged in: huggingface-cli login")
|
| 228 |
+
print("3. Have reviewed MODEL_CARD.md and README.md")
|
| 229 |
+
print(f"4. Model path exists: {args.model_path} ({'✓' if os.path.exists(args.model_path) else '✗'})")
|
| 230 |
+
|
| 231 |
+
if not args.yes:
|
| 232 |
+
print("\n" + "=" * 70)
|
| 233 |
+
response = input(f"\nProceed with publishing to {args.repo_id}? (yes/no): ")
|
| 234 |
+
if response.lower() not in ['yes', 'y']:
|
| 235 |
+
print("Publishing cancelled.")
|
| 236 |
+
sys.exit(0)
|
| 237 |
+
|
| 238 |
+
success = publish_to_hub(
|
| 239 |
+
model_path=args.model_path,
|
| 240 |
+
repo_id=args.repo_id,
|
| 241 |
+
private=args.private,
|
| 242 |
+
upload_code=not args.no_code,
|
| 243 |
+
upload_model=not args.no_model
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
if not success:
|
| 247 |
+
sys.exit(1)
|
scripts/upload_to_hub.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Upload trained model to Hugging Face Hub
|
| 3 |
+
"""
|
| 4 |
+
import argparse
|
| 5 |
+
import sys
|
| 6 |
+
import os
|
| 7 |
+
from huggingface_hub import HfApi, create_repo
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 9 |
+
|
| 10 |
+
# Add parent directory to path (if needed)
|
| 11 |
+
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def upload_to_hub(
|
| 15 |
+
model_path: str,
|
| 16 |
+
repo_name: str,
|
| 17 |
+
organization: str = None,
|
| 18 |
+
private: bool = False
|
| 19 |
+
):
|
| 20 |
+
"""
|
| 21 |
+
Upload model to Hugging Face Hub.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
model_path: Path to the trained model
|
| 25 |
+
repo_name: Name for the repository on Hugging Face Hub
|
| 26 |
+
organization: Organization name (optional)
|
| 27 |
+
private: Whether to make the repository private
|
| 28 |
+
"""
|
| 29 |
+
print("=" * 60)
|
| 30 |
+
print("Uploading Model to Hugging Face Hub")
|
| 31 |
+
print("=" * 60)
|
| 32 |
+
|
| 33 |
+
# Create full repo ID
|
| 34 |
+
if organization:
|
| 35 |
+
repo_id = f"{organization}/{repo_name}"
|
| 36 |
+
else:
|
| 37 |
+
repo_id = repo_name
|
| 38 |
+
|
| 39 |
+
print(f"\nRepository: {repo_id}")
|
| 40 |
+
print(f"Private: {private}")
|
| 41 |
+
|
| 42 |
+
# Load model and tokenizer
|
| 43 |
+
print("\n[1/3] Loading model...")
|
| 44 |
+
try:
|
| 45 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 46 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 47 |
+
print("✓ Model loaded successfully")
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print(f"✗ Error loading model: {e}")
|
| 50 |
+
return
|
| 51 |
+
|
| 52 |
+
# Create repository
|
| 53 |
+
print("\n[2/3] Creating repository...")
|
| 54 |
+
try:
|
| 55 |
+
create_repo(
|
| 56 |
+
repo_id=repo_id,
|
| 57 |
+
repo_type="model",
|
| 58 |
+
exist_ok=True,
|
| 59 |
+
private=private
|
| 60 |
+
)
|
| 61 |
+
print(f"✓ Repository created/verified: {repo_id}")
|
| 62 |
+
except Exception as e:
|
| 63 |
+
print(f"✗ Error creating repository: {e}")
|
| 64 |
+
print("\nMake sure you're logged in:")
|
| 65 |
+
print(" huggingface-cli login")
|
| 66 |
+
return
|
| 67 |
+
|
| 68 |
+
# Push to hub
|
| 69 |
+
print("\n[3/3] Uploading model and tokenizer...")
|
| 70 |
+
try:
|
| 71 |
+
model.push_to_hub(repo_id)
|
| 72 |
+
tokenizer.push_to_hub(repo_id)
|
| 73 |
+
print("✓ Upload complete!")
|
| 74 |
+
except Exception as e:
|
| 75 |
+
print(f"✗ Error uploading: {e}")
|
| 76 |
+
return
|
| 77 |
+
|
| 78 |
+
print("\n" + "=" * 60)
|
| 79 |
+
print("Success! 🎉")
|
| 80 |
+
print("=" * 60)
|
| 81 |
+
print(f"\nYour model is now available at:")
|
| 82 |
+
print(f"https://huggingface.co/{repo_id}")
|
| 83 |
+
|
| 84 |
+
print("\nTo use your model:")
|
| 85 |
+
print(f"""
|
| 86 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 87 |
+
|
| 88 |
+
tokenizer = AutoTokenizer.from_pretrained("{repo_id}")
|
| 89 |
+
model = AutoModelForSequenceClassification.from_pretrained("{repo_id}")
|
| 90 |
+
""")
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
if __name__ == "__main__":
|
| 94 |
+
parser = argparse.ArgumentParser(description="Upload model to Hugging Face Hub")
|
| 95 |
+
parser.add_argument(
|
| 96 |
+
"--model-path",
|
| 97 |
+
type=str,
|
| 98 |
+
default="./results/final_model",
|
| 99 |
+
help="Path to the trained model"
|
| 100 |
+
)
|
| 101 |
+
parser.add_argument(
|
| 102 |
+
"--repo-name",
|
| 103 |
+
type=str,
|
| 104 |
+
required=True,
|
| 105 |
+
help="Name for the repository on Hugging Face Hub"
|
| 106 |
+
)
|
| 107 |
+
parser.add_argument(
|
| 108 |
+
"--organization",
|
| 109 |
+
type=str,
|
| 110 |
+
default=None,
|
| 111 |
+
help="Organization name (optional)"
|
| 112 |
+
)
|
| 113 |
+
parser.add_argument(
|
| 114 |
+
"--private",
|
| 115 |
+
action="store_true",
|
| 116 |
+
help="Make the repository private"
|
| 117 |
+
)
|
| 118 |
+
args = parser.parse_args()
|
| 119 |
+
|
| 120 |
+
print("\nBefore uploading, make sure you:")
|
| 121 |
+
print("1. Have a Hugging Face account")
|
| 122 |
+
print("2. Are logged in: huggingface-cli login")
|
| 123 |
+
print("3. Have reviewed the model card (MODEL_CARD.md)")
|
| 124 |
+
|
| 125 |
+
response = input("\nProceed with upload? (yes/no): ")
|
| 126 |
+
if response.lower() in ['yes', 'y']:
|
| 127 |
+
upload_to_hub(
|
| 128 |
+
args.model_path,
|
| 129 |
+
args.repo_name,
|
| 130 |
+
args.organization,
|
| 131 |
+
args.private
|
| 132 |
+
)
|
| 133 |
+
else:
|
| 134 |
+
print("Upload cancelled.")
|