File size: 19,307 Bytes
8d5d80e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
#!/usr/bin/env python3
"""
Generate programming problems from function_dataset_v2.csv using OpenAI API.
Filters by relevance score and controls API cost.
"""
import csv
import json
import os
import sys
from openai import OpenAI
from datetime import datetime
from typing import Dict, Optional, Tuple
import time
# Configuration
MODEL_NAME = "gpt-4o-mini" # Cost-effective model, can change to "gpt-4o" for better quality
MIN_RELEVANCE_SCORE = 60 # Only process functions with score >= 60
MAX_BUDGET_USD = 10.0 # Maximum budget in USD
# OpenAI pricing (as of Dec 2024)
# Official pricing: https://openai.com/api/pricing/
PRICING = {
# GPT-5 series
"gpt-5.2": {
"input": 1.75 / 1_000_000, # $1.75 per 1M input tokens
"output": 14.00 / 1_000_000, # $14.00 per 1M output tokens
},
"gpt-5.1": {
"input": 1.25 / 1_000_000, # $1.25 per 1M input tokens
"output": 10.00 / 1_000_000, # $10.00 per 1M output tokens
},
"gpt-5": {
"input": 1.25 / 1_000_000, # $1.25 per 1M input tokens
"output": 10.00 / 1_000_000, # $10.00 per 1M output tokens
},
"gpt-5-mini": {
"input": 0.25 / 1_000_000, # $0.25 per 1M input tokens
"output": 2.00 / 1_000_000, # $2.00 per 1M output tokens
},
"gpt-5-nano": {
"input": 0.05 / 1_000_000, # $0.05 per 1M input tokens
"output": 0.40 / 1_000_000, # $0.40 per 1M output tokens
},
# GPT-5 Pro series
"gpt-5.2-pro": {
"input": 21.00 / 1_000_000, # $21.00 per 1M input tokens
"output": 168.00 / 1_000_000, # $168.00 per 1M output tokens
},
"gpt-5-pro": {
"input": 15.00 / 1_000_000, # $15.00 per 1M input tokens
"output": 120.00 / 1_000_000, # $120.00 per 1M output tokens
},
# GPT-4.1 series
"gpt-4.1": {
"input": 2.00 / 1_000_000, # $2.00 per 1M input tokens
"output": 8.00 / 1_000_000, # $8.00 per 1M output tokens
},
"gpt-4.1-mini": {
"input": 0.40 / 1_000_000, # $0.40 per 1M input tokens
"output": 1.60 / 1_000_000, # $1.60 per 1M output tokens
},
"gpt-4.1-nano": {
"input": 0.10 / 1_000_000, # $0.10 per 1M input tokens
"output": 0.40 / 1_000_000, # $0.40 per 1M output tokens
},
# GPT-4o series (currently available)
"gpt-4o": {
"input": 2.50 / 1_000_000, # $2.50 per 1M input tokens
"output": 10.00 / 1_000_000, # $10.00 per 1M output tokens
},
"gpt-4o-2024-05-13": {
"input": 5.00 / 1_000_000, # $5.00 per 1M input tokens
"output": 15.00 / 1_000_000, # $15.00 per 1M output tokens
},
"gpt-4o-mini": {
"input": 0.15 / 1_000_000, # $0.15 per 1M input tokens
"output": 0.60 / 1_000_000, # $0.60 per 1M output tokens
},
# Realtime and Audio models
"gpt-realtime": {
"input": 4.00 / 1_000_000, # $4.00 per 1M input tokens
"output": 16.00 / 1_000_000, # $16.00 per 1M output tokens
},
"gpt-realtime-mini": {
"input": 0.60 / 1_000_000, # $0.60 per 1M input tokens
"output": 2.40 / 1_000_000, # $2.40 per 1M output tokens
},
"gpt-audio": {
"input": 2.50 / 1_000_000, # $2.50 per 1M input tokens
"output": 10.00 / 1_000_000, # $10.00 per 1M output tokens
},
"gpt-audio-mini": {
"input": 0.60 / 1_000_000, # $0.60 per 1M input tokens
"output": 2.40 / 1_000_000, # $2.40 per 1M output tokens
},
}
PROMPT_TEMPLATE = """You are an expert in scientific computing and computational chemistry/biology/physics. Please create a high-quality programming problem inspired by the following code snippet from a real scientific computing project.
The problem should focus on scientific computing concepts such as:
- Numerical algorithms and simulations
- Data analysis and visualization
- Mathematical modeling
- Scientific data processing
- Computational methods in chemistry, biology, or physics
Code snippet for inspiration:
```python
{code}
```
Present your output in two distinct sections:
[Problem Description]
Create a **completely self-contained** problem description that:
- Does NOT directly reference the code snippet above
- Provides all necessary context and background
- Clearly states what needs to be implemented
- Specifies input/output format and constraints
- Is inspired by the scientific computing concepts in the code but creates a NEW, interesting problem
- Assumes common programming knowledge but explains any domain-specific concepts
[Solution]
Provide a comprehensive, **correct** Python solution that:
- Accurately solves the problem described
- Includes clear comments explaining the approach
- Uses appropriate scientific computing libraries (numpy, scipy, etc.) when relevant
- Is complete and runnable
- Follows best practices for scientific computing
Remember: The problem should be INSPIRED by the code, not a direct copy. Create something educational and interesting for scientific computing practitioners."""
class OpenAIClient:
"""Client for OpenAI API with cost tracking."""
def __init__(self, model_name: str = MODEL_NAME, api_key: Optional[str] = None):
"""Initialize OpenAI API client.
Args:
model_name: Name of the OpenAI model to use
api_key: OpenAI API key (if None, will use OPENAI_API_KEY env variable)
"""
self.model_name = model_name
self.client = OpenAI(api_key=api_key)
# Get pricing for the model
if model_name in PRICING:
self.input_price = PRICING[model_name]["input"]
self.output_price = PRICING[model_name]["output"]
else:
print(f"Warning: No pricing info for {model_name}, using gpt-4o-mini prices")
self.input_price = PRICING["gpt-4o-mini"]["input"]
self.output_price = PRICING["gpt-4o-mini"]["output"]
# Statistics
self.total_input_tokens = 0
self.total_output_tokens = 0
self.total_requests = 0
self.total_cost = 0.0
def generate_content(self, prompt: str, max_retries: int = 3) -> Tuple[str, Dict]:
"""Generate content using OpenAI API and track usage.
Args:
prompt: The prompt to send to the API
max_retries: Maximum number of retries on rate limit errors
Returns:
Tuple of (response_text, usage_info)
usage_info contains: input_tokens, output_tokens, cost
"""
for attempt in range(max_retries):
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "system", "content": "You are an expert in scientific computing and programming education."},
{"role": "user", "content": prompt}
],
temperature=0.7,
)
# Extract usage information
usage = response.usage
input_tokens = usage.prompt_tokens
output_tokens = usage.completion_tokens
# Calculate cost
input_cost = input_tokens * self.input_price
output_cost = output_tokens * self.output_price
request_cost = input_cost + output_cost
# Update totals
self.total_input_tokens += input_tokens
self.total_output_tokens += output_tokens
self.total_requests += 1
self.total_cost += request_cost
usage_info = {
'input_tokens': input_tokens,
'output_tokens': output_tokens,
'total_tokens': input_tokens + output_tokens,
'input_cost': input_cost,
'output_cost': output_cost,
'request_cost': request_cost
}
return response.choices[0].message.content, usage_info
except Exception as e:
error_msg = str(e)
# Check if it's a rate limit error
if "rate_limit" in error_msg.lower() or "429" in error_msg:
if attempt < max_retries - 1:
wait_time = (attempt + 1) * 5 # 5, 10, 15 seconds
print(f"\n⚠️ Rate limit hit, waiting {wait_time}s before retry {attempt + 2}/{max_retries}...")
time.sleep(wait_time)
continue
# For other errors or if max retries reached, raise the exception
print(f"\nError generating content: {e}")
raise
raise Exception(f"Failed after {max_retries} retries")
def get_total_usage(self) -> Dict:
"""Get total usage statistics.
Returns:
Dictionary with total usage information
"""
return {
'total_requests': self.total_requests,
'total_input_tokens': self.total_input_tokens,
'total_output_tokens': self.total_output_tokens,
'total_tokens': self.total_input_tokens + self.total_output_tokens,
'total_cost': self.total_cost
}
def print_usage_summary(self):
"""Print a summary of API usage and costs."""
usage = self.get_total_usage()
print("\n" + "="*70)
print("API USAGE SUMMARY")
print("="*70)
print(f"Model: {self.model_name}")
print(f"Total Requests: {usage['total_requests']}")
print(f"Total Input Tokens: {usage['total_input_tokens']:,}")
print(f"Total Output Tokens: {usage['total_output_tokens']:,}")
print(f"Total Tokens: {usage['total_tokens']:,}")
print(f"\nTotal Cost: ${usage['total_cost']:.6f}")
print(f"Budget Remaining: ${MAX_BUDGET_USD - usage['total_cost']:.6f}")
print("="*70)
def process_function_dataset(
input_file: str,
output_file: str,
min_score: int = MIN_RELEVANCE_SCORE,
max_budget: float = MAX_BUDGET_USD,
max_samples: Optional[int] = None,
start_from: int = 0,
model_name: str = MODEL_NAME
):
"""Process function dataset and generate programming problems.
Args:
input_file: Path to function_dataset_v2.csv
output_file: Path to output JSONL file
min_score: Minimum relevance score to process
max_budget: Maximum budget in USD
max_samples: Maximum number of samples to process (None for all)
start_from: Skip first N rows (for resuming)
model_name: OpenAI model to use
"""
print(f"Starting programming problem generation with OpenAI...")
print(f"Input: {input_file}")
print(f"Output: {output_file}")
print(f"Model: {model_name}")
print(f"Min Relevance Score: {min_score}")
print(f"Max Budget: ${max_budget:.2f}")
if max_samples:
print(f"Max Samples: {max_samples}")
print(f"Starting from row: {start_from}")
print()
# Initialize OpenAI client
client = OpenAIClient(model_name=model_name)
# Statistics
total_rows = 0
processed = 0
skipped_low_score = 0
skipped_no_code = 0
errors = 0
# Open output file in append mode if resuming
# mode = 'a' if start_from > 0 else 'w'
mode = 'a'
try:
with open(input_file, 'r', encoding='utf-8') as infile, \
open(output_file, mode, encoding='utf-8') as outfile:
reader = csv.DictReader(infile)
for row in reader:
total_rows += 1
# Skip if resuming
if total_rows <= start_from:
continue
# Check if we've reached max samples
if max_samples and processed >= max_samples:
print(f"\nReached max samples ({max_samples}). Stopping.")
break
# Check budget
if client.total_cost >= max_budget:
print(f"\n⚠️ Budget limit reached (${client.total_cost:.6f} >= ${max_budget:.2f})")
print(f"Stopping at row {total_rows}")
break
# Filter by relevance score
try:
relevance_score = int(row.get('relevance_score', 0))
except (ValueError, TypeError):
relevance_score = 0
if relevance_score < min_score:
skipped_low_score += 1
continue
# Get function content
function_content = row.get('function_content', '').strip()
if not function_content or len(function_content) < 50:
skipped_no_code += 1
continue
# Prepare metadata
metadata = {
'original_index': row.get('original_index'),
'function_name': row.get('function_name'),
'repo_name': row.get('repo_name'),
'path': row.get('path'),
'language': row.get('language'),
'relevance_score': relevance_score,
'function_start_line': row.get('function_start_line'),
'function_end_line': row.get('function_end_line'),
}
# Generate prompt
prompt = PROMPT_TEMPLATE.format(code=function_content)
# Call API
try:
print(f"Processing row {total_rows} (score={relevance_score}, func={metadata['function_name']})...", end=' ')
response_text, usage_info = client.generate_content(prompt)
print(f"✓ (${usage_info['request_cost']:.6f}, {usage_info['total_tokens']} tokens)")
# Save result
result = {
'metadata': metadata,
'prompt': prompt,
'response': response_text,
'usage': usage_info,
'model': model_name,
'timestamp': datetime.now().isoformat(),
'row_number': total_rows
}
outfile.write(json.dumps(result, ensure_ascii=False) + '\n')
outfile.flush() # Ensure data is written immediately
processed += 1
# Print periodic summary
if processed % 10 == 0:
print(f"\n--- Progress: {processed} problems generated, ${client.total_cost:.6f} spent ---\n")
except Exception as e:
print(f"✗ Error: {e}")
errors += 1
# If too many errors in a row, stop
if errors >= 5 and processed == 0:
print("\n⚠️ Too many errors at the beginning. Please check your API key and configuration.")
break
continue
except KeyboardInterrupt:
print("\n\n⚠️ Interrupted by user.")
# Final summary
print("\n" + "="*70)
print("PROCESSING COMPLETE")
print("="*70)
print(f"Total rows read: {total_rows}")
print(f"Successfully processed: {processed}")
print(f"Skipped (low score): {skipped_low_score}")
print(f"Skipped (no/short code): {skipped_no_code}")
print(f"Errors: {errors}")
client.print_usage_summary()
print(f"\nResults saved to: {output_file}")
return processed
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description='Generate programming problems from function dataset using OpenAI API'
)
parser.add_argument(
'--input',
default='function_dataset_v2.csv',
help='Input CSV file (default: function_dataset_v2.csv)'
)
parser.add_argument(
'--output',
default='programming_problems_openai.jsonl',
help='Output JSONL file (default: programming_problems_openai.jsonl)'
)
parser.add_argument(
'--model',
default=MODEL_NAME,
choices=[
# Most commonly used models (recommended)
'gpt-4o-mini', 'gpt-4o',
# GPT-4.1 series
'gpt-4.1', 'gpt-4.1-mini', 'gpt-4.1-nano',
# GPT-5 series
'gpt-5', 'gpt-5.1', 'gpt-5.2', 'gpt-5-mini', 'gpt-5-nano',
# Specialized models
'gpt-4o-2024-05-13', 'gpt-realtime', 'gpt-audio'
],
help=f'OpenAI model to use (default: {MODEL_NAME}). Recommended: gpt-4o-mini for cost-effectiveness, gpt-4o for quality'
)
parser.add_argument(
'--min-score',
type=int,
default=MIN_RELEVANCE_SCORE,
help=f'Minimum relevance score (default: {MIN_RELEVANCE_SCORE})'
)
parser.add_argument(
'--max-budget',
type=float,
default=MAX_BUDGET_USD,
help=f'Maximum budget in USD (default: {MAX_BUDGET_USD})'
)
parser.add_argument(
'--max-samples',
type=int,
default=None,
help='Maximum number of samples to process (default: no limit)'
)
parser.add_argument(
'--start-from',
type=int,
default=0,
help='Start from row N (for resuming, default: 0)'
)
args = parser.parse_args()
# Check if input file exists
if not os.path.exists(args.input):
print(f"Error: Input file not found: {args.input}")
sys.exit(1)
# Check if API key is set
if not os.getenv('OPENAI_API_KEY'):
print("Error: OPENAI_API_KEY environment variable not set.")
print("Please set it with: export OPENAI_API_KEY='your-api-key'")
sys.exit(1)
try:
process_function_dataset(
input_file=args.input,
output_file=args.output,
min_score=args.min_score,
max_budget=args.max_budget,
max_samples=args.max_samples,
start_from=args.start_from,
model_name=args.model
)
print("\n✅ Success!")
except KeyboardInterrupt:
print("\n\n⚠️ Interrupted by user. Progress has been saved to output file.")
print(f" You can resume by using --start-from <row_number>")
sys.exit(0)
except Exception as e:
print(f"\n❌ Error: {e}")
import traceback
traceback.print_exc()
sys.exit(1)
|