Upload data3/enrich_programming_problems.py with huggingface_hub
Browse files
data3/enrich_programming_problems.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Memory-efficient script to enrich programming_problems.jsonl
|
| 4 |
+
Only loads the exact rows we need from enhanced_dataset.csv
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import json
|
| 8 |
+
import csv
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import sys
|
| 11 |
+
|
| 12 |
+
def get_needed_original_indices(function_csv, input_jsonl):
|
| 13 |
+
"""
|
| 14 |
+
Get the set of original_index values we actually need to look up.
|
| 15 |
+
|
| 16 |
+
Returns:
|
| 17 |
+
Dictionary mapping original_index to list of row_numbers that need it
|
| 18 |
+
"""
|
| 19 |
+
print("Step 1: Determining which original_index values we need...")
|
| 20 |
+
|
| 21 |
+
# First, get row_number to original_index mapping from function_dataset_v2
|
| 22 |
+
row_to_original = {}
|
| 23 |
+
with open(function_csv, 'r', encoding='utf-8') as f:
|
| 24 |
+
reader = csv.DictReader(f)
|
| 25 |
+
for i, row in enumerate(tqdm(reader, desc="Reading function_dataset_v2"), start=1):
|
| 26 |
+
try:
|
| 27 |
+
original_index = int(row['original_index'])
|
| 28 |
+
row_to_original[i] = original_index
|
| 29 |
+
except (ValueError, KeyError):
|
| 30 |
+
pass
|
| 31 |
+
|
| 32 |
+
# Next, get the row_numbers from JSONL that we need to enrich
|
| 33 |
+
needed_indices = {}
|
| 34 |
+
with open(input_jsonl, 'r', encoding='utf-8') as f:
|
| 35 |
+
for line in tqdm(f, desc="Reading JSONL", total=22532):
|
| 36 |
+
data = json.loads(line.strip())
|
| 37 |
+
row_number = data.get('row_number')
|
| 38 |
+
|
| 39 |
+
if row_number in row_to_original:
|
| 40 |
+
original_index = row_to_original[row_number]
|
| 41 |
+
if original_index not in needed_indices:
|
| 42 |
+
needed_indices[original_index] = []
|
| 43 |
+
needed_indices[original_index].append(row_number)
|
| 44 |
+
|
| 45 |
+
print(f"Need to look up {len(needed_indices)} unique original_index values")
|
| 46 |
+
print(f"Max index needed: {max(needed_indices.keys())}")
|
| 47 |
+
print(f"Min index needed: {min(needed_indices.keys())}")
|
| 48 |
+
|
| 49 |
+
return row_to_original, needed_indices
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def load_needed_metadata(enhanced_csv, needed_indices):
|
| 53 |
+
"""
|
| 54 |
+
Load only the needed rows from enhanced_dataset.csv.
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
enhanced_csv: Path to enhanced_dataset.csv
|
| 58 |
+
needed_indices: Set of original_index values we need
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
Dictionary mapping original_index to {repo_name, path, language}
|
| 62 |
+
"""
|
| 63 |
+
print("\nStep 2: Loading only needed rows from enhanced_dataset.csv...")
|
| 64 |
+
print(f"Looking for {len(needed_indices)} unique indices...")
|
| 65 |
+
print("This will scan the entire file - may take several minutes...")
|
| 66 |
+
|
| 67 |
+
mapping = {}
|
| 68 |
+
needed_remaining = set(needed_indices.keys())
|
| 69 |
+
|
| 70 |
+
with open(enhanced_csv, 'r', encoding='utf-8') as f:
|
| 71 |
+
reader = csv.DictReader(f)
|
| 72 |
+
|
| 73 |
+
for i, row in enumerate(tqdm(reader, desc="Reading enhanced_dataset")):
|
| 74 |
+
# Get the index from various possible column names
|
| 75 |
+
idx = row.get('', row.get('Unnamed: 0.1', row.get('Unnamed: 0')))
|
| 76 |
+
if idx:
|
| 77 |
+
try:
|
| 78 |
+
idx = int(idx)
|
| 79 |
+
if idx in needed_remaining:
|
| 80 |
+
mapping[idx] = {
|
| 81 |
+
'repo_name': row.get('repo_name', ''),
|
| 82 |
+
'path': row.get('path', ''),
|
| 83 |
+
'language': row.get('language', '')
|
| 84 |
+
}
|
| 85 |
+
needed_remaining.remove(idx)
|
| 86 |
+
|
| 87 |
+
# Progress update every 1000 found
|
| 88 |
+
if len(mapping) % 1000 == 0:
|
| 89 |
+
print(f"Found {len(mapping)}/{len(needed_indices)} needed indices...")
|
| 90 |
+
|
| 91 |
+
# Early exit if we found everything
|
| 92 |
+
if len(needed_remaining) == 0:
|
| 93 |
+
print(f"Found all needed indices at row {i}!")
|
| 94 |
+
break
|
| 95 |
+
except (ValueError, KeyError):
|
| 96 |
+
pass
|
| 97 |
+
|
| 98 |
+
print(f"Loaded metadata for {len(mapping)} indices")
|
| 99 |
+
print(f"Missing: {len(needed_indices) - len(mapping)} indices")
|
| 100 |
+
|
| 101 |
+
if needed_remaining:
|
| 102 |
+
print(f"Example missing indices: {list(needed_remaining)[:10]}")
|
| 103 |
+
|
| 104 |
+
return mapping
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def enrich_programming_problems(input_jsonl, output_jsonl, metadata_mapping, row_to_original):
|
| 108 |
+
"""
|
| 109 |
+
Enrich programming_problems.jsonl with metadata.
|
| 110 |
+
"""
|
| 111 |
+
print("\nStep 3: Enriching JSONL file...")
|
| 112 |
+
|
| 113 |
+
matched_count = 0
|
| 114 |
+
unmatched_count = 0
|
| 115 |
+
|
| 116 |
+
with open(input_jsonl, 'r', encoding='utf-8') as f_in, \
|
| 117 |
+
open(output_jsonl, 'w', encoding='utf-8') as f_out:
|
| 118 |
+
|
| 119 |
+
for line in tqdm(f_in, desc="Processing JSONL", total=22532):
|
| 120 |
+
data = json.loads(line.strip())
|
| 121 |
+
row_number = data.get('row_number')
|
| 122 |
+
|
| 123 |
+
if row_number in row_to_original:
|
| 124 |
+
original_index = row_to_original[row_number]
|
| 125 |
+
|
| 126 |
+
if original_index in metadata_mapping:
|
| 127 |
+
enrichment = metadata_mapping[original_index]
|
| 128 |
+
data['metadata']['repo_name'] = enrichment['repo_name']
|
| 129 |
+
data['metadata']['path'] = enrichment['path']
|
| 130 |
+
data['metadata']['language'] = enrichment['language']
|
| 131 |
+
matched_count += 1
|
| 132 |
+
else:
|
| 133 |
+
unmatched_count += 1
|
| 134 |
+
else:
|
| 135 |
+
unmatched_count += 1
|
| 136 |
+
|
| 137 |
+
f_out.write(json.dumps(data, ensure_ascii=False) + '\n')
|
| 138 |
+
|
| 139 |
+
return matched_count, unmatched_count
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def main():
|
| 143 |
+
enhanced_csv = 'enhanced_dataset.csv'
|
| 144 |
+
function_csv = 'function_dataset_v2.csv'
|
| 145 |
+
input_jsonl = 'programming_problems.jsonl'
|
| 146 |
+
output_jsonl = 'programming_problems_enriched.jsonl'
|
| 147 |
+
|
| 148 |
+
# Step 1: Determine what we need
|
| 149 |
+
row_to_original, needed_indices = get_needed_original_indices(function_csv, input_jsonl)
|
| 150 |
+
|
| 151 |
+
# Step 2: Load only what we need
|
| 152 |
+
metadata_mapping = load_needed_metadata(enhanced_csv, needed_indices)
|
| 153 |
+
|
| 154 |
+
# Step 3: Enrich the JSONL
|
| 155 |
+
matched, unmatched = enrich_programming_problems(input_jsonl, output_jsonl,
|
| 156 |
+
metadata_mapping, row_to_original)
|
| 157 |
+
|
| 158 |
+
print(f"\n{'='*60}")
|
| 159 |
+
print(f"✅ Enrichment complete!")
|
| 160 |
+
print(f"{'='*60}")
|
| 161 |
+
print(f"Output written to: {output_jsonl}")
|
| 162 |
+
print(f"Matched: {matched}")
|
| 163 |
+
print(f"Unmatched: {unmatched}")
|
| 164 |
+
print(f"Total: {matched + unmatched}")
|
| 165 |
+
print(f"Match rate: {matched / (matched + unmatched) * 100:.1f}%")
|
| 166 |
+
|
| 167 |
+
return 0
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
if __name__ == '__main__':
|
| 171 |
+
sys.exit(main())
|