Update README.md
Browse files
README.md
CHANGED
|
@@ -7,31 +7,56 @@ tags:
|
|
| 7 |
- lora
|
| 8 |
- transformers
|
| 9 |
model-index:
|
| 10 |
-
- name: SmolVLM2-500M-Video-Instruct-
|
| 11 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 15 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
|
| 17 |
# SmolVLM2-500M-Video-Instruct-vqav2
|
| 18 |
|
| 19 |
-
This model is a fine-tuned version of [HuggingFaceTB/SmolVLM2-500M-Video-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-500M-Video-Instruct) on
|
| 20 |
|
| 21 |
## Model description
|
| 22 |
|
| 23 |
-
|
| 24 |
|
| 25 |
## Intended uses & limitations
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
## Training and evaluation data
|
| 30 |
|
| 31 |
-
|
| 32 |
|
| 33 |
## Training procedure
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
### Training hyperparameters
|
| 36 |
|
| 37 |
The following hyperparameters were used during training:
|
|
@@ -44,8 +69,73 @@ The following hyperparameters were used during training:
|
|
| 44 |
- lr_scheduler_warmup_steps: 50
|
| 45 |
- num_epochs: 1
|
| 46 |
|
| 47 |
-
###
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
|
| 51 |
### Framework versions
|
|
|
|
| 7 |
- lora
|
| 8 |
- transformers
|
| 9 |
model-index:
|
| 10 |
+
- name: Susant-Achary/SmolVLM2-500M-Video-Instruct-VQA2
|
| 11 |
+
results:
|
| 12 |
+
- task:
|
| 13 |
+
type: visual-question-answering
|
| 14 |
+
dataset:
|
| 15 |
+
type: jinaai/table-vqa
|
| 16 |
+
name: jinaai/table-vqa
|
| 17 |
+
metrics:
|
| 18 |
+
- type: training_loss
|
| 19 |
+
value: 0.7473664236068726
|
| 20 |
+
datasets:
|
| 21 |
+
- jinaai/table-vqa
|
| 22 |
+
language:
|
| 23 |
+
- en
|
| 24 |
+
pipeline_tag: visual-question-answering
|
| 25 |
---
|
| 26 |
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# SmolVLM2-500M-Video-Instruct-vqav2
|
| 29 |
|
| 30 |
+
This model is a fine-tuned version of [HuggingFaceTB/SmolVLM2-500M-Video-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-500M-Video-Instruct) on the [jinaai/table-vqa](https://huggingface.co/datasets/jinaai/table-vqa) dataset.
|
| 31 |
|
| 32 |
## Model description
|
| 33 |
|
| 34 |
+
This model is a SmolVLM2-500M-Video-Instruct model fine-tuned for Visual Question Answering on table images using the jinaai/table-vqa dataset. It was fine-tuned using QLoRA for efficient training on consumer GPUs.
|
| 35 |
|
| 36 |
## Intended uses & limitations
|
| 37 |
|
| 38 |
+
This model is intended for Visual Question Answering tasks specifically on images containing tables. It can be used to answer questions about the content of tables within images.
|
| 39 |
+
|
| 40 |
+
Limitations:
|
| 41 |
+
- Performance may vary on different types of images or questions outside of the table VQA domain.
|
| 42 |
+
- The model was fine-tuned on a small subset of the dataset for demonstration purposes.
|
| 43 |
+
- The model's performance is dependent on the quality and nature of the jinaai/table-vqa dataset.
|
| 44 |
|
| 45 |
## Training and evaluation data
|
| 46 |
|
| 47 |
+
The model was trained on a subset of the [jinaai/table-vqa](https://huggingface.co/datasets/jinaai/table-vqa) dataset. The training dataset size is 800 examples, and the test dataset size is 200 examples.
|
| 48 |
|
| 49 |
## Training procedure
|
| 50 |
|
| 51 |
+
The model was fine-tuned using the QLoRA method with the following configuration:
|
| 52 |
+
- `r=8`
|
| 53 |
+
- `lora_alpha=8`
|
| 54 |
+
- `lora_dropout=0.1`
|
| 55 |
+
- `target_modules=['down_proj','o_proj','k_proj','q_proj','gate_proj','up_proj','v_proj']`
|
| 56 |
+
- `use_dora=False`
|
| 57 |
+
- `init_lora_weights="gaussian"`
|
| 58 |
+
- 4-bit quantization (`bnb_4bit_use_double_quant=True`, `bnb_4bit_quant_type="nf4"`, `bnb_4bit_compute_dtype=torch.bfloat16`)
|
| 59 |
+
|
| 60 |
### Training hyperparameters
|
| 61 |
|
| 62 |
The following hyperparameters were used during training:
|
|
|
|
| 69 |
- lr_scheduler_warmup_steps: 50
|
| 70 |
- num_epochs: 1
|
| 71 |
|
| 72 |
+
### Direct Use
|
| 73 |
+
```python
|
| 74 |
+
import torch
|
| 75 |
+
from peft import PeftModel, PeftConfig
|
| 76 |
+
from transformers import AutoProcessor, Idefics3ForConditionalGeneration, BitsAndBytesConfig
|
| 77 |
+
from PIL import Image
|
| 78 |
+
import requests
|
| 79 |
+
|
| 80 |
+
# Define the base model and the fine-tuned adapter repository
|
| 81 |
+
base_model_id = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct"
|
| 82 |
+
adapter_model_id = "Susant-Achary/SmolVLM2-500M-Video-Instruct-vqav2"
|
| 83 |
+
|
| 84 |
+
# Load the processor from the base model
|
| 85 |
+
processor = AutoProcessor.from_pretrained(base_model_id)
|
| 86 |
+
|
| 87 |
+
# Load the base model with quantization
|
| 88 |
+
bnb_config = BitsAndBytesConfig(
|
| 89 |
+
load_in_4bit=True,
|
| 90 |
+
bnb_4bit_use_double_quant=True,
|
| 91 |
+
bnb_4bit_quant_type="nf4",
|
| 92 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
model = Idefics3ForConditionalGeneration.from_pretrained(
|
| 96 |
+
base_model_id,
|
| 97 |
+
quantization_config=bnb_config,
|
| 98 |
+
_attn_implementation="flash_attention_2",
|
| 99 |
+
device_map="auto"
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Load the adapter and add it to the base model
|
| 103 |
+
model = PeftModel.from_pretrained(model, adapter_model_id)
|
| 104 |
+
|
| 105 |
+
# Prepare an example image and question
|
| 106 |
+
# You can replace this with your own image and question
|
| 107 |
+
url = "https://www.gstatic.com/webp/gallery/2.jpg"
|
| 108 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 109 |
+
question = "What is in the image?"
|
| 110 |
+
|
| 111 |
+
# Prepare the input for the model
|
| 112 |
+
messages = [
|
| 113 |
+
{
|
| 114 |
+
"role": "user",
|
| 115 |
+
"content": [
|
| 116 |
+
{"type": "text", "text": "Answer briefly."},
|
| 117 |
+
{"type": "image"},
|
| 118 |
+
{"type": "text", "text": question}
|
| 119 |
+
]
|
| 120 |
+
},
|
| 121 |
+
{
|
| 122 |
+
"role": "assistant",
|
| 123 |
+
"content": [
|
| 124 |
+
{"type": "text", "text": None}
|
| 125 |
+
]
|
| 126 |
+
}
|
| 127 |
+
]
|
| 128 |
+
|
| 129 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=False)
|
| 130 |
+
inputs = processor(text=[prompt], images=[image], return_tensors="pt").to(model.device) # Move inputs to model device
|
| 131 |
+
|
| 132 |
+
# Generate a response
|
| 133 |
+
generated_ids = model.generate(**inputs, max_new_tokens=100)
|
| 134 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 135 |
+
|
| 136 |
+
# Print the generated response
|
| 137 |
+
print(generated_text)
|
| 138 |
+
```
|
| 139 |
|
| 140 |
|
| 141 |
### Framework versions
|