better pre-processor for comfyui
Browse filesupdate the pre-processor to better version!
- TTP_tile_preprocessor_v5.py +191 -0
TTP_tile_preprocessor_v5.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
def pil2tensor(image: Image) -> torch.Tensor:
|
| 7 |
+
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
|
| 8 |
+
|
| 9 |
+
def tensor2pil(t_image: torch.Tensor) -> Image:
|
| 10 |
+
return Image.fromarray(np.clip(255.0 * t_image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
|
| 11 |
+
|
| 12 |
+
def apply_gaussian_blur(image_np, ksize=5, sigmaX=1.0):
|
| 13 |
+
if ksize % 2 == 0:
|
| 14 |
+
ksize += 1 # ksize must be odd
|
| 15 |
+
blurred_image = cv2.GaussianBlur(image_np, (ksize, ksize), sigmaX=sigmaX)
|
| 16 |
+
return blurred_image
|
| 17 |
+
|
| 18 |
+
def apply_guided_filter(image_np, radius, eps):
|
| 19 |
+
# Convert image to float32 for the guided filter
|
| 20 |
+
image_np_float = np.float32(image_np) / 255.0
|
| 21 |
+
# Apply the guided filter
|
| 22 |
+
filtered_image = cv2.ximgproc.guidedFilter(image_np_float, image_np_float, radius, eps)
|
| 23 |
+
# Scale back to uint8
|
| 24 |
+
filtered_image = np.clip(filtered_image * 255, 0, 255).astype(np.uint8)
|
| 25 |
+
return filtered_image
|
| 26 |
+
|
| 27 |
+
class TTPlanet_Tile_Preprocessor_GF:
|
| 28 |
+
def __init__(self, blur_strength=3.0, radius=7, eps=0.01):
|
| 29 |
+
self.blur_strength = blur_strength
|
| 30 |
+
self.radius = radius
|
| 31 |
+
self.eps = eps
|
| 32 |
+
|
| 33 |
+
@classmethod
|
| 34 |
+
def INPUT_TYPES(cls):
|
| 35 |
+
return {
|
| 36 |
+
"required": {
|
| 37 |
+
"image": ("IMAGE",),
|
| 38 |
+
"scale_factor": ("FLOAT", {"default": 1.00, "min": 1.00, "max": 8.00, "step": 0.05}),
|
| 39 |
+
"blur_strength": ("FLOAT", {"default": 2.0, "min": 1.0, "max": 10.0, "step": 0.1}),
|
| 40 |
+
"radius": ("INT", {"default": 7, "min": 1, "max": 20, "step": 1}),
|
| 41 |
+
"eps": ("FLOAT", {"default": 0.01, "min": 0.001, "max": 0.1, "step": 0.001}),
|
| 42 |
+
},
|
| 43 |
+
"optional": {}
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
RETURN_TYPES = ("IMAGE",)
|
| 47 |
+
RETURN_NAMES = ("image_output",)
|
| 48 |
+
FUNCTION = 'process_image'
|
| 49 |
+
CATEGORY = 'TTP_TILE'
|
| 50 |
+
|
| 51 |
+
def process_image(self, image, scale_factor, blur_strength, radius, eps):
|
| 52 |
+
ret_images = []
|
| 53 |
+
|
| 54 |
+
for i in image:
|
| 55 |
+
# Convert tensor to PIL for processing
|
| 56 |
+
_canvas = tensor2pil(torch.unsqueeze(i, 0)).convert('RGB')
|
| 57 |
+
img_np = np.array(_canvas)[:, :, ::-1] # RGB to BGR
|
| 58 |
+
|
| 59 |
+
# Apply Gaussian blur
|
| 60 |
+
img_np = apply_gaussian_blur(img_np, ksize=int(blur_strength), sigmaX=blur_strength / 2)
|
| 61 |
+
|
| 62 |
+
# Apply Guided Filter
|
| 63 |
+
img_np = apply_guided_filter(img_np, radius, eps)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Resize image
|
| 67 |
+
height, width = img_np.shape[:2]
|
| 68 |
+
new_width = int(width / scale_factor)
|
| 69 |
+
new_height = int(height / scale_factor)
|
| 70 |
+
resized_down = cv2.resize(img_np, (new_width, new_height), interpolation=cv2.INTER_AREA)
|
| 71 |
+
resized_img = cv2.resize(resized_down, (width, height), interpolation=cv2.INTER_CUBIC)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# Convert OpenCV back to PIL and then to tensor
|
| 76 |
+
pil_img = Image.fromarray(resized_img[:, :, ::-1]) # BGR to RGB
|
| 77 |
+
tensor_img = pil2tensor(pil_img)
|
| 78 |
+
ret_images.append(tensor_img)
|
| 79 |
+
|
| 80 |
+
return (torch.cat(ret_images, dim=0),)
|
| 81 |
+
|
| 82 |
+
class TTPlanet_Tile_Preprocessor_Simple:
|
| 83 |
+
def __init__(self, blur_strength=3.0):
|
| 84 |
+
self.blur_strength = blur_strength
|
| 85 |
+
|
| 86 |
+
@classmethod
|
| 87 |
+
def INPUT_TYPES(cls):
|
| 88 |
+
return {
|
| 89 |
+
"required": {
|
| 90 |
+
"image": ("IMAGE",),
|
| 91 |
+
"scale_factor": ("FLOAT", {"default": 2.00, "min": 1.00, "max": 8.00, "step": 0.05}),
|
| 92 |
+
"blur_strength": ("FLOAT", {"default": 1.0, "min": 1.0, "max": 20.0, "step": 0.1}),
|
| 93 |
+
},
|
| 94 |
+
"optional": {}
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
RETURN_TYPES = ("IMAGE",)
|
| 98 |
+
RETURN_NAMES = ("image_output",)
|
| 99 |
+
FUNCTION = 'process_image'
|
| 100 |
+
CATEGORY = 'TTP_TILE'
|
| 101 |
+
|
| 102 |
+
def process_image(self, image, scale_factor, blur_strength):
|
| 103 |
+
ret_images = []
|
| 104 |
+
|
| 105 |
+
for i in image:
|
| 106 |
+
# Convert tensor to PIL for processing
|
| 107 |
+
_canvas = tensor2pil(torch.unsqueeze(i, 0)).convert('RGB')
|
| 108 |
+
|
| 109 |
+
# Convert PIL image to OpenCV format
|
| 110 |
+
img_np = np.array(_canvas)[:, :, ::-1] # RGB to BGR
|
| 111 |
+
|
| 112 |
+
# Resize image first if you want blur to apply after resizing
|
| 113 |
+
height, width = img_np.shape[:2]
|
| 114 |
+
new_width = int(width / scale_factor)
|
| 115 |
+
new_height = int(height / scale_factor)
|
| 116 |
+
resized_down = cv2.resize(img_np, (new_width, new_height), interpolation=cv2.INTER_AREA)
|
| 117 |
+
resized_img = cv2.resize(resized_down, (width, height), interpolation=cv2.INTER_LANCZOS4)
|
| 118 |
+
|
| 119 |
+
# Apply Gaussian blur after resizing
|
| 120 |
+
img_np = apply_gaussian_blur(resized_img, ksize=int(blur_strength), sigmaX=blur_strength / 2)
|
| 121 |
+
|
| 122 |
+
# Convert OpenCV back to PIL and then to tensor
|
| 123 |
+
_canvas = Image.fromarray(img_np[:, :, ::-1]) # BGR to RGB
|
| 124 |
+
tensor_img = pil2tensor(_canvas)
|
| 125 |
+
ret_images.append(tensor_img)
|
| 126 |
+
|
| 127 |
+
return (torch.cat(ret_images, dim=0),)
|
| 128 |
+
|
| 129 |
+
class TTPlanet_Tile_Preprocessor_cufoff:
|
| 130 |
+
def __init__(self, blur_strength=3.0, cutoff_frequency=30, filter_strength=1.0):
|
| 131 |
+
self.blur_strength = blur_strength
|
| 132 |
+
self.cutoff_frequency = cutoff_frequency
|
| 133 |
+
self.filter_strength = filter_strength
|
| 134 |
+
|
| 135 |
+
@classmethod
|
| 136 |
+
def INPUT_TYPES(cls):
|
| 137 |
+
return {
|
| 138 |
+
"required": {
|
| 139 |
+
"image": ("IMAGE",),
|
| 140 |
+
"scale_factor": ("FLOAT", {"default": 1.00, "min": 1.00, "max": 8.00, "step": 0.05}),
|
| 141 |
+
"blur_strength": ("FLOAT", {"default": 2.0, "min": 1.0, "max": 10.0, "step": 0.1}),
|
| 142 |
+
"cutoff_frequency": ("INT", {"default": 100, "min": 0, "max": 256, "step": 1}),
|
| 143 |
+
"filter_strength": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 10.0, "step": 0.1}),
|
| 144 |
+
},
|
| 145 |
+
"optional": {}
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
RETURN_TYPES = ("IMAGE",)
|
| 149 |
+
RETURN_NAMES = ("image_output",)
|
| 150 |
+
FUNCTION = 'process_image'
|
| 151 |
+
CATEGORY = 'TTP_TILE'
|
| 152 |
+
|
| 153 |
+
def process_image(self, image, scale_factor, blur_strength, cutoff_frequency, filter_strength):
|
| 154 |
+
ret_images = []
|
| 155 |
+
|
| 156 |
+
for i in image:
|
| 157 |
+
# Convert tensor to PIL for processing
|
| 158 |
+
_canvas = tensor2pil(torch.unsqueeze(i, 0)).convert('RGB')
|
| 159 |
+
img_np = np.array(_canvas)[:, :, ::-1] # RGB to BGR
|
| 160 |
+
|
| 161 |
+
# Apply low pass filter with new strength parameter
|
| 162 |
+
img_np = apply_low_pass_filter(img_np, cutoff_frequency, filter_strength)
|
| 163 |
+
|
| 164 |
+
# Resize image
|
| 165 |
+
height, width = img_np.shape[:2]
|
| 166 |
+
new_width = int(width / scale_factor)
|
| 167 |
+
new_height = int(height / scale_factor)
|
| 168 |
+
resized_down = cv2.resize(img_np, (new_width, new_height), interpolation=cv2.INTER_AREA)
|
| 169 |
+
resized_img = cv2.resize(resized_down, (width, height), interpolation=cv2.INTER_LANCZOS4)
|
| 170 |
+
|
| 171 |
+
# Apply Gaussian blur
|
| 172 |
+
img_np = apply_gaussian_blur(img_np, ksize=int(blur_strength), sigmaX=blur_strength / 2)
|
| 173 |
+
|
| 174 |
+
# Convert OpenCV back to PIL and then to tensor
|
| 175 |
+
pil_img = Image.fromarray(resized_img[:, :, ::-1]) # BGR to RGB
|
| 176 |
+
tensor_img = pil2tensor(pil_img)
|
| 177 |
+
ret_images.append(tensor_img)
|
| 178 |
+
|
| 179 |
+
return (torch.cat(ret_images, dim=0),)
|
| 180 |
+
|
| 181 |
+
NODE_CLASS_MAPPINGS = {
|
| 182 |
+
"TTPlanet_Tile_Preprocessor_GF": TTPlanet_Tile_Preprocessor_GF,
|
| 183 |
+
"TTPlanet_Tile_Preprocessor_Simple": TTPlanet_Tile_Preprocessor_Simple,
|
| 184 |
+
"TTPlanet_Tile_Preprocessor_cufoff": TTPlanet_Tile_Preprocessor_cufoff
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
| 188 |
+
"TTPlanet_Tile_Preprocessor_GF": "🪐TTPlanet Tile Preprocessor GF",
|
| 189 |
+
"TTPlanet_Tile_Preprocessor_Simple": "🪐TTPlanet Tile Preprocessor Simple",
|
| 190 |
+
"TTPlanet_Tile_Preprocessor_cufoff": "🪐TTPlanet Tile Preprocessor cufoff"
|
| 191 |
+
}
|