--- framework: pytorch model: EfficientNet-B1 dataset: CIFAR10 (restructured to have random upright and upside-down samples, with labels {0:'up', 1:'down'} imgSize: 224x224x3 --- This repository contains model trained to predict orientation {0:'up', 1:'down'} of images. The model '.pkl' file contains a dictionary with the following keys: ```python: 'optimizer': optimizer state dictionary 'scheduler': scheduler state dictionary 'model': model state dictionary 'epoch': checkpoint epoch ``` The image size is 3x224x224. The model can be initialized as: ```python: model = torchvision.models.efficientnet_b1(pretrained=True) in_features = model.classifier[1].in_features out_features = 2 model.classifier[1] = nn.Linear(in_features, out_features, bias=True) ```