Tanneru commited on
Commit
78223de
·
verified ·
1 Parent(s): b83fd25

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +150 -199
README.md CHANGED
@@ -1,199 +1,150 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - jtatman/python-code-dataset-500k
5
+ metrics:
6
+ - bleu
7
+ - rouge
8
+ - perplexity
9
+ - chrf
10
+ - codebertscore
11
+ base_model:
12
+ - codellama/CodeLlama-7b-Python-hf
13
+ pipeline_tag: text-generation
14
+ tags:
15
+ - code
16
+ - python
17
+ - codellama
18
+ - lora
19
+ - peft
20
+ - sft
21
+ - programming
22
+ ---
23
+
24
+ # CodeLlama-7b-Python-hf-ft
25
+
26
+ This repository contains a **LoRA fine-tuned adapter** for **[CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf)**, trained to improve **Python instruction-following and code generation**.
27
+
28
+ **Note:**
29
+ This is a **PEFT LoRA adapter**, not a fully merged standalone model. You must load it on top of the base model.
30
+
31
+ ---
32
+
33
+ ## Model Details
34
+
35
+ - **Base model**: [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf)
36
+ - **Fine-tuned for**: Python instruction-following and code generation
37
+ - **Fine-tuning method**: SFT + LoRA (PEFT)
38
+ - **Framework**: Transformers + PEFT + TRL
39
+
40
+ ---
41
+
42
+ ## Dataset Used
43
+
44
+ This adapter was fine-tuned on:
45
+
46
+ 1. [jtatman/python-code-dataset-500k](https://huggingface.co/datasets/jtatman/python-code-dataset-500k)
47
+ - Large-scale Python instruction → solution pairs
48
+ - Parquet format (~500k+ examples)
49
+
50
+ ---
51
+
52
+ ## Training Configuration
53
+
54
+ ### LoRA Configuration
55
+ - **r:** 32
56
+ - **lora_alpha:** 16
57
+ - **Target modules:**
58
+ `q_proj`, `k_proj`, `v_proj`, `o_proj`, `gate_proj`, `up_proj`, `down_proj`
59
+
60
+ ### SFT Configuration
61
+ - **Epochs:** 1
62
+ - **Learning rate:** 2e-4
63
+ - **Scheduler:** cosine
64
+ - **Warmup ratio:** 0.03
65
+ - **Weight decay:** 0.0
66
+ - **Train batch size:** 4
67
+ - **Eval batch size:** 4
68
+ - **Gradient accumulation steps:** 16
69
+ - **Precision:** bf16
70
+ - **Attention:** flash_attention_2
71
+ - **Packing:** enabled
72
+ - **Gradient checkpointing:** enabled
73
+ - **Logging:** every 50 steps + per epoch
74
+ - **Saving:** per epoch (`save_total_limit=2`)
75
+
76
+ ---
77
+
78
+ ## Evaluation Results
79
+
80
+ The model was evaluated using both language-modeling metrics and generation-quality metrics.
81
+
82
+ ### 📉 Perplexity / Loss
83
+ - **Base model loss:** `1.3214`
84
+ - **Base model perplexity:** `3.7486`
85
+
86
+ - **Fine-tuned (LoRA) val/test loss:** `0.7126`
87
+ - **Fine-tuned (LoRA) val/test perplexity:** `2.0394`
88
+
89
+ ### 📊 Generation Quality Metrics (Test)
90
+ - **Exact Match:** `0.0033`
91
+ - **Normalized Exact Match:** `0.0033`
92
+
93
+ - **BLEU:** `18.43`
94
+ - **chrF:** `34.06`
95
+ - **ROUGE-L (F1):** `0.2417`
96
+
97
+ ### 🧠 CodeBERTScore (Mean)
98
+ - **Precision:** `0.7187`
99
+ - **Recall:** `0.7724`
100
+ - **F1:** `0.7421`
101
+ - **F3:** `0.7657`
102
+
103
+ ### 🧾 Training Summary (from logs)
104
+ - **Train loss:** `~0.6903`
105
+ - **Eval loss:** `~0.6877`
106
+
107
+ ---
108
+
109
+ ## Example Usage
110
+
111
+ ```python
112
+ import torch
113
+ from transformers import AutoModelForCausalLM, AutoTokenizer
114
+ from peft import PeftModel
115
+
116
+ # Base + adapter
117
+ base_id = "codellama/CodeLlama-7b-Python-hf"
118
+ adapter_id = "Tanneru/CodeLlama-7b-Python-hf-ft"
119
+
120
+ # Load tokenizer (repo includes tokenizer files)
121
+ tokenizer = AutoTokenizer.from_pretrained(adapter_id)
122
+
123
+ # Load base model
124
+ base_model = AutoModelForCausalLM.from_pretrained(
125
+ base_id,
126
+ device_map="auto",
127
+ torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
128
+ )
129
+
130
+ # Load LoRA adapter
131
+ model = PeftModel.from_pretrained(base_model, adapter_id)
132
+ model.eval()
133
+
134
+ prompt = "Write a Python function that checks if a number is prime."
135
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
136
+
137
+ with torch.inference_mode():
138
+ out = model.generate(**inputs, max_new_tokens=256)
139
+
140
+ print(tokenizer.decode(out[0], skip_special_tokens=True))
141
+
142
+
143
+ @misc{tanneru2025codellamapythonft,
144
+ title = {CodeLlama-7b-Python-hf-ft},
145
+ author = {Tanneru},
146
+ year = {2025},
147
+ publisher = {Hugging Face},
148
+ howpublished = {\url{https://huggingface.co/Tanneru/CodeLlama-7b-Python-hf-ft}}
149
+ }
150
+