Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
license_link: https://huggingface.co/Qwen/Qwen3-Coder-480B-A35B-Instruct/blob/main/LICENSE
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
AWQ quantized version of Qwen3-Coder-480B-A35B-Instruct model.
|
| 9 |
+
|
| 10 |
+
---
|
| 11 |
+
# Qwen3-Coder-480B-A35B-Instruct
|
| 12 |
+
<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
|
| 13 |
+
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
|
| 14 |
+
</a>
|
| 15 |
+
## Highlights
|
| 16 |
+
|
| 17 |
+
Today, we're announcing **Qwen3-Coder**, our most agentic code model to date. **Qwen3-Coder** is available in multiple sizes, but we're excited to introduce its most powerful variant first: **Qwen3-Coder-480B-A35B-Instruct**. featuring the following key enhancements:
|
| 18 |
+
|
| 19 |
+
- **Significant Performance** among open models on **Agentic Coding**, **Agentic Browser-Use**, and other foundational coding tasks, achieving results comparable to Claude Sonnet.
|
| 20 |
+
- **Long-context Capabilities** with native support for **256K** tokens, extendable up to **1M** tokens using Yarn, optimized for repository-scale understanding.
|
| 21 |
+
- **Agentic Coding** supporting for most platform such as **Qwen Code**, **CLINE**, featuring a specially designed function call format.
|
| 22 |
+
|
| 23 |
+

|
| 24 |
+
|
| 25 |
+
## Model Overview
|
| 26 |
+
|
| 27 |
+
**Qwen3-480B-A35B-Instruct** has the following features:
|
| 28 |
+
- Type: Causal Language Models
|
| 29 |
+
- Training Stage: Pretraining & Post-training
|
| 30 |
+
- Number of Parameters: 480B in total and 35B activated
|
| 31 |
+
- Number of Layers: 62
|
| 32 |
+
- Number of Attention Heads (GQA): 96 for Q and 8 for KV
|
| 33 |
+
- Number of Experts: 160
|
| 34 |
+
- Number of Activated Experts: 8
|
| 35 |
+
- Context Length: **262,144 natively**.
|
| 36 |
+
|
| 37 |
+
**NOTE: This model supports only non-thinking mode and does not generate ``<think></think>`` blocks in its output. Meanwhile, specifying `enable_thinking=False` is no longer required.**
|
| 38 |
+
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-coder/), [GitHub](https://github.com/QwenLM/Qwen3-Coder), and [Documentation](https://qwen.readthedocs.io/en/latest/).
|
| 39 |
+
## Quickstart
|
| 40 |
+
We advise you to use the latest version of `transformers`.
|
| 41 |
+
With `transformers<4.51.0`, you will encounter the following error:
|
| 42 |
+
```
|
| 43 |
+
KeyError: 'qwen3_moe'
|
| 44 |
+
```
|
| 45 |
+
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
|
| 46 |
+
```python
|
| 47 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 48 |
+
model_name = "Qwen/Qwen3-480B-A35B-Instruct"
|
| 49 |
+
# load the tokenizer and the model
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 52 |
+
model_name,
|
| 53 |
+
torch_dtype="auto",
|
| 54 |
+
device_map="auto"
|
| 55 |
+
)
|
| 56 |
+
# prepare the model input
|
| 57 |
+
prompt = "Write a quick sort algorithm."
|
| 58 |
+
messages = [
|
| 59 |
+
{"role": "user", "content": prompt}
|
| 60 |
+
]
|
| 61 |
+
text = tokenizer.apply_chat_template(
|
| 62 |
+
messages,
|
| 63 |
+
tokenize=False,
|
| 64 |
+
add_generation_prompt=True,
|
| 65 |
+
)
|
| 66 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 67 |
+
# conduct text completion
|
| 68 |
+
generated_ids = model.generate(
|
| 69 |
+
**model_inputs,
|
| 70 |
+
max_new_tokens=65536
|
| 71 |
+
)
|
| 72 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 73 |
+
content = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 74 |
+
|
| 75 |
+
print("content:", content)
|
| 76 |
+
```
|
| 77 |
+
**Note: If you encounter out-of-memory (OOM) issues, consider reducing the context length to a shorter value, such as `32,768`.**
|
| 78 |
+
For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
|
| 79 |
+
## Agentic Coding
|
| 80 |
+
Qwen3-Coder excels in tool calling capabilities.
|
| 81 |
+
You can simply define or use any tools as following example.
|
| 82 |
+
```python
|
| 83 |
+
# Your tool implementation
|
| 84 |
+
def square_the_number(num: float) -> dict:
|
| 85 |
+
return num ** 2
|
| 86 |
+
# Define Tools
|
| 87 |
+
tools=[
|
| 88 |
+
{
|
| 89 |
+
"type":"function",
|
| 90 |
+
"function":{
|
| 91 |
+
"name": "square_the_number",
|
| 92 |
+
"description": "output the square of the number.",
|
| 93 |
+
"parameters": {
|
| 94 |
+
"type": "object",
|
| 95 |
+
"required": ["input_num"],
|
| 96 |
+
"properties": {
|
| 97 |
+
'input_num': {
|
| 98 |
+
'type': 'number',
|
| 99 |
+
'description': 'input_num is a number that will be squared'
|
| 100 |
+
}
|
| 101 |
+
},
|
| 102 |
+
}
|
| 103 |
+
}
|
| 104 |
+
}
|
| 105 |
+
]
|
| 106 |
+
import OpenAI
|
| 107 |
+
# Define LLM
|
| 108 |
+
client = OpenAI(
|
| 109 |
+
# Use a custom endpoint compatible with OpenAI API
|
| 110 |
+
base_url='http://localhost:8000/v1', # api_base
|
| 111 |
+
api_key="EMPTY"
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
messages = [{'role': 'user', 'content': 'square the number 1024'}]
|
| 115 |
+
completion = client.chat.completions.create(
|
| 116 |
+
messages=messages,
|
| 117 |
+
model="Qwen3-Coder-480B-A35B-Instruct",
|
| 118 |
+
max_tokens=65536,
|
| 119 |
+
tools=tools,
|
| 120 |
+
)
|
| 121 |
+
print(completion.choice[0])
|
| 122 |
+
```
|
| 123 |
+
## Best Practices
|
| 124 |
+
To achieve optimal performance, we recommend the following settings:
|
| 125 |
+
1. **Sampling Parameters**:
|
| 126 |
+
- We suggest using `temperature=0.7`, `top_p=0.8`, `top_k=20`, `repetition_penalty=1.05`.
|
| 127 |
+
2. **Adequate Output Length**: We recommend using an output length of 65,536 tokens for most queries, which is adequate for instruct models.
|
| 128 |
+
### Citation
|
| 129 |
+
If you find our work helpful, feel free to give us a cite.
|
| 130 |
+
```
|
| 131 |
+
@misc{qwen3technicalreport,
|
| 132 |
+
title={Qwen3 Technical Report},
|
| 133 |
+
author={Qwen Team},
|
| 134 |
+
year={2025},
|
| 135 |
+
eprint={2505.09388},
|
| 136 |
+
archivePrefix={arXiv},
|
| 137 |
+
primaryClass={cs.CL},
|
| 138 |
+
url={https://arxiv.org/abs/2505.09388},
|
| 139 |
+
}
|
| 140 |
+
```
|