Text-to-Image
Diffusers
Safetensors
English
ZImagePipeline
QJerry commited on
Commit
eeaf506
·
verified ·
1 Parent(s): c6576b5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -21
README.md CHANGED
@@ -12,8 +12,12 @@ library_name: diffusers
12
  <div align="center">
13
 
14
  [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Checkpoint-Z--Image--Turbo-yellow)](https://huggingface.co/Tongyi-MAI/Z-Image-Turbo)&#160;
 
15
  [![ModelScope Model](https://img.shields.io/badge/🤖%20Checkpoint-Z--Image--Turbo-624aff)](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image-Turbo)&#160;
16
- [![ModelScope Space](https://img.shields.io/badge/🤖%20Demo-Z--Image--Turbo-624aff)](https://www.modelscope.cn/aigc/imageGeneration?tab=advanced&versionId=469191&modelType=Checkpoint&sdVersion=Z_IMAGE_TURBO&modelUrl=modelscope%253A%252F%252FTongyi-MAI%252FZ-Image-Turbo%253Frevision%253Dmaster%7D%7BOnline)&#160;
 
 
 
17
 
18
  Welcome to the official repository for the Z-Image(造相)project!
19
 
@@ -23,19 +27,21 @@ Welcome to the official repository for the Z-Image(造相)project!
23
 
24
  ## ✨ Z-Image
25
 
26
- Z-Image is a powerful and highly efficient image generation model with **6B** parameters. It is currently available in two variants:
27
 
28
  - 🚀 **Z-Image-Turbo** – A distilled version of Z-Image that matches or exceeds leading competitors with only **8 NFEs** (Number of Function Evaluations). It offers **⚡️sub-second inference latency⚡️** on enterprise-grade H800 GPUs and fits comfortably within **16G VRAM consumer devices**. It excels in photorealistic image generation, bilingual text rendering (English & Chinese), and robust instruction adherence.
29
 
 
 
30
  - ✍️ **Z-Image-Edit** – A variant fine-tuned on Z-Image specifically for image editing tasks. It supports creative image-to-image generation with impressive instruction-following capabilities, allowing for precise edits based on natural language prompts.
31
 
32
  ### 📥 Model Zoo
33
 
34
- | Model | Hugging Face | ModelScope |
35
- | :--- | :--- | :--- |
36
- | **Z-Image-Turbo** | [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Z--Image--Turbo-yellow)](https://huggingface.co/Tongyi-MAI/Z-Image-Turbo) <br> [![Hugging Face Space](https://img.shields.io/badge/%F0%9F%A4%97%20Online%20Demo-Z--Image--Turbo-blue)](https://huggingface.co/spaces/Tongyi-MAI/Z-Image-Turbo) | [![ModelScope Model](https://img.shields.io/badge/🤖%20ModelScope-Z--Image--Turbo-624aff)](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image-Turbo) <br> [![ModelScope Space](https://img.shields.io/badge/%F0%9F%A4%96%20Online%20Demo-Z--Image--Turbo-17c7a7)](https://www.modelscope.cn/aigc/imageGeneration?tab=advanced&versionId=469191&modelType=Checkpoint&sdVersion=Z_IMAGE_TURBO&modelUrl=modelscope%3A%2F%2FTongyi-MAI%2FZ-Image-Turbo%3Frevision%3Dmaster) |
37
- | **Z-Image-Base** | *To be released* | *To be released* |
38
- | **Z-Image-Edit** | *To be released* | *To be released* |
39
 
40
  ### 🖼️ Showcase
41
 
@@ -61,15 +67,20 @@ We adopt a **Scalable Single-Stream DiT** (S3-DiT) architecture. In this setup,
61
  ![Architecture of Z-Image and Z-Image-Edit](assets/architecture.webp)
62
 
63
  ### 📈 Performance
64
- According to the Elo-based Human Preference Evaluation (on [AI Arena](https://aiarena.alibaba-inc.com/corpora/arena/label?arenaType=T2I)), Z-Image-Turbo shows highly competitive performance against other leading models, while achieving state-of-the-art results among open-source models.
65
 
66
- ![Z-Image Elo Rating on AI Arena](assets/leaderboard.webp)
 
 
 
 
 
67
 
68
  ### 🚀 Quick Start
69
 
70
  ```python
71
  import torch
72
- from diffusers import ZImagePipeline
73
 
74
  # 1. Load the pipeline
75
  # Use bfloat16 for optimal performance on supported GPUs
@@ -134,25 +145,17 @@ Our core insight behind DMDR is that Reinforcement Learning (RL) and Distributio
134
 
135
  ![Diagram of DMDR](assets/DMDR.webp)
136
 
137
- > More resources for DMDR will be released soon.
138
-
139
- ## ⏬ Download
140
-
141
- ```bash
142
- hf download --model 'Tongyi-MAI/Z-Image-Turbo' --local_dir 'Z-Image-Turbo'
143
- ```
144
-
145
  ## 📜 Citation
146
 
147
  If you find our work useful in your research, please consider citing:
148
 
149
  ```bibtex
150
  @misc{z-image-2025,
151
- title={Z-Image: An Efficient Image Generative Model with Single-Stream Diffusion Transformer},
152
- author={Z-Image Team, Tongyi Interaction Lab, Alibaba Group},
153
  year={2025},
154
  publisher={GitHub},
155
  journal={GitHub repository},
156
  howpublished={\url{https://github.com/Tongyi-MAI/Z-Image}}
157
  }
158
- ```
 
12
  <div align="center">
13
 
14
  [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Checkpoint-Z--Image--Turbo-yellow)](https://huggingface.co/Tongyi-MAI/Z-Image-Turbo)&#160;
15
+ [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Online_Demo-Z--Image--Turbo-blue)](ttps://huggingface.co/spaces/Tongyi-MAI/Z-Image-Turbo)&#160;
16
  [![ModelScope Model](https://img.shields.io/badge/🤖%20Checkpoint-Z--Image--Turbo-624aff)](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image-Turbo)&#160;
17
+ [![ModelScope Space](https://img.shields.io/badge/🤖%20Online_Demo-Z--Image--Turbo-17c7a7)](https://www.modelscope.cn/aigc/imageGeneration?tab=advanced&versionId=469191&modelType=Checkpoint&sdVersion=Z_IMAGE_TURBO&modelUrl=modelscope%253A%252F%252FTongyi-MAI%252FZ-Image-Turbo%253Frevision%253Dmaster%7D%7BOnline)&#160;
18
+ [![Art Gallery PDF](https://img.shields.io/badge/%F0%9F%96%BC%20Art_Gallery-PDF-ff69b4)](assets/Z-Image-Gallery.pdf)&#160;
19
+ [![Web Art Gallery](https://img.shields.io/badge/%F0%9F%8C%90%20Web_Art_Gallery-online-00bfff)](https://modelscope.cn/studios/Tongyi-MAI/Z-Image-Gallery/summary)&#160;
20
+
21
 
22
  Welcome to the official repository for the Z-Image(造相)project!
23
 
 
27
 
28
  ## ✨ Z-Image
29
 
30
+ Z-Image is a powerful and highly efficient image generation model with **6B** parameters. It is currently has three variants:
31
 
32
  - 🚀 **Z-Image-Turbo** – A distilled version of Z-Image that matches or exceeds leading competitors with only **8 NFEs** (Number of Function Evaluations). It offers **⚡️sub-second inference latency⚡️** on enterprise-grade H800 GPUs and fits comfortably within **16G VRAM consumer devices**. It excels in photorealistic image generation, bilingual text rendering (English & Chinese), and robust instruction adherence.
33
 
34
+ - 🧱 **Z-Image-Base** – The non-distilled foundation model. By releasing this checkpoint, we aim to unlock the full potential for community-driven fine-tuning and custom development.
35
+
36
  - ✍️ **Z-Image-Edit** – A variant fine-tuned on Z-Image specifically for image editing tasks. It supports creative image-to-image generation with impressive instruction-following capabilities, allowing for precise edits based on natural language prompts.
37
 
38
  ### 📥 Model Zoo
39
 
40
+ | Model | Hugging Face | ModelScope |
41
+ | :--- |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
42
+ | **Z-Image-Turbo** | [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Checkpoint%20-Z--Image--Turbo-yellow)](https://huggingface.co/Tongyi-MAI/Z-Image-Turbo) <br> [![Hugging Face Space](https://img.shields.io/badge/%F0%9F%A4%97%20Online%20Demo-Z--Image--Turbo-blue)](https://huggingface.co/spaces/Tongyi-MAI/Z-Image-Turbo) | [![ModelScope Model](https://img.shields.io/badge/🤖%20%20Checkpoint-Z--Image--Turbo-624aff)](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image-Turbo) <br> [![ModelScope Space](https://img.shields.io/badge/%F0%9F%A4%96%20Online%20Demo-Z--Image--Turbo-17c7a7)](https://www.modelscope.cn/aigc/imageGeneration?tab=advanced&versionId=469191&modelType=Checkpoint&sdVersion=Z_IMAGE_TURBO&modelUrl=modelscope%3A%2F%2FTongyi-MAI%2FZ-Image-Turbo%3Frevision%3Dmaster) |
43
+ | **Z-Image-Base** | *To be released* | *To be released* |
44
+ | **Z-Image-Edit** | *To be released* | *To be released* |
45
 
46
  ### 🖼️ Showcase
47
 
 
67
  ![Architecture of Z-Image and Z-Image-Edit](assets/architecture.webp)
68
 
69
  ### 📈 Performance
70
+ According to the Elo-based Human Preference Evaluation (on [AI Arena](https://aiarena.alibaba-inc.com/corpora/arena/leaderboard?arenaType=T2I)), Z-Image-Turbo shows highly competitive performance against other leading models, while achieving state-of-the-art results among open-source models.
71
 
72
+ <p align="center">
73
+ <a href="https://aiarena.alibaba-inc.com/corpora/arena/leaderboard?arenaType=T2I">
74
+ <img src="assets/leaderboard.webp" alt="Z-Image Elo Rating on AI Arena"/><br />
75
+ <span style="font-size:1.05em; cursor:pointer; text-decoration:underline;"> Click to view the full leaderboard</span>
76
+ </a>
77
+ </p>
78
 
79
  ### 🚀 Quick Start
80
 
81
  ```python
82
  import torch
83
+ from diffusers import ZImagePipeline,
84
 
85
  # 1. Load the pipeline
86
  # Use bfloat16 for optimal performance on supported GPUs
 
145
 
146
  ![Diagram of DMDR](assets/DMDR.webp)
147
 
 
 
 
 
 
 
 
 
148
  ## 📜 Citation
149
 
150
  If you find our work useful in your research, please consider citing:
151
 
152
  ```bibtex
153
  @misc{z-image-2025,
154
+ title={Z-Image: An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer},
155
+ author={Tongyi Lab},
156
  year={2025},
157
  publisher={GitHub},
158
  journal={GitHub repository},
159
  howpublished={\url{https://github.com/Tongyi-MAI/Z-Image}}
160
  }
161
+ ```