Commit
路
d4fad95
1
Parent(s):
289b600
Update README.md
Browse files
README.md
CHANGED
|
@@ -8,9 +8,32 @@ language:
|
|
| 8 |
metrics:
|
| 9 |
- exact_match
|
| 10 |
- f1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
#
|
| 14 |
|
| 15 |
This is the *distilled* version of the [VMware/roberta-large-mrqa](https://huggingface.co/VMware/roberta-large-mrqa) model. This model has a comparable prediction quality to the base model and runs twice as fast.
|
| 16 |
|
|
|
|
| 8 |
metrics:
|
| 9 |
- exact_match
|
| 10 |
- f1
|
| 11 |
+
|
| 12 |
+
model-index:
|
| 13 |
+
- name: VMware/TinyRoBERTa-MRQA
|
| 14 |
+
results:
|
| 15 |
+
- task:
|
| 16 |
+
type: Extractive Question-Answering
|
| 17 |
+
dataset:
|
| 18 |
+
type: mrqa # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
|
| 19 |
+
name: mrqa # Required. A pretty name for the dataset. Example: Common Voice (French)
|
| 20 |
+
|
| 21 |
+
metrics:
|
| 22 |
+
- type: exact_match # Required. Example: wer. Use metric id from https://hf.co/metrics
|
| 23 |
+
value: 69.38 # Required. Example: 20.90
|
| 24 |
+
name: Eval EM # Optional. Example: Test WER
|
| 25 |
+
- type: f1 # Required. Example: wer. Use metric id from https://hf.co/metrics
|
| 26 |
+
value: 80.07 # Required. Example: 20.90
|
| 27 |
+
name: Eval F1 # Optional. Example: Test WER
|
| 28 |
+
- type: exact_match # Required. Example: wer. Use metric id from https://hf.co/metrics
|
| 29 |
+
value: 53.29 # Required. Example: 20.90
|
| 30 |
+
name: Test EM # Optional. Example: Test WER
|
| 31 |
+
- type: f1 # Required. Example: wer. Use metric id from https://hf.co/metrics
|
| 32 |
+
value: 64.16 # Required. Example: 20.90
|
| 33 |
+
name: Test F1 # Optional. Example: Test WER
|
| 34 |
---
|
| 35 |
|
| 36 |
+
# TinyRoBERTa-MRQA
|
| 37 |
|
| 38 |
This is the *distilled* version of the [VMware/roberta-large-mrqa](https://huggingface.co/VMware/roberta-large-mrqa) model. This model has a comparable prediction quality to the base model and runs twice as fast.
|
| 39 |
|