import torch import spaces import tempfile import soundfile as sf import gradio as gr import librosa as lb import yaml import numpy as np import matplotlib.pyplot as plt from model.cleanmel import CleanMel from model.vocos.pretrained import Vocos from model.stft import InputSTFT, TargetMel DEVICE = torch.device("cuda:5") def read_audio(file_path): audio, sample_rate = sf.read(file_path) if audio.ndim > 1: audio = audio[:, 0] if sample_rate != 16000: audio = lb.resample(audio, orig_sr=sample_rate, target_sr=16000) sample_rate = 16000 return torch.tensor(audio).float().squeeze().unsqueeze(0) def stft(audio): transform = InputSTFT( n_fft=512, n_win=512, n_hop=128, normalize=False, center=True, onesided=True, online=False ).to(DEVICE) return transform(audio) def mel_transform(audio, X_norm): transform = TargetMel( sample_rate=16000, n_fft=512, n_win=512, n_hop=128, n_mels=80, f_min=0, f_max=8000, power=2, center=True, normalize=False, onesided=True, mel_norm="slaney", mel_scale="slaney", librosa_mel=True, online=False ).to(DEVICE) return transform(audio, X_norm) def load_cleanmel(model_name): model_config = f"./configs/cleanmel_offline.yaml" model_config = yaml.safe_load(open(model_config, "r"))["model"]["arch"]["init_args"] cleanmel = CleanMel(**model_config) cleanmel.load_state_dict(torch.load(f"./ckpts/CleanMel/{model_name}.ckpt")) return cleanmel.eval() def load_vocos(model_name): vocos = Vocos.from_hparams(config_path="./configs/vocos_offline.yaml") vocos = Vocos.from_pretrained(None, model_path=f"./ckpts/Vocos/{model_name}.pt", model=vocos) return vocos.eval() def get_mrm_pred(Y_hat, x, X_norm): X_noisy = mel_transform(x, X_norm) Y_hat = Y_hat.squeeze() Y_hat = torch.square(Y_hat * (torch.sqrt(X_noisy) + 1e-10)) return Y_hat def safe_log(x): return torch.log(torch.clip(x, min=1e-5)) @spaces.GPU @torch.inference_mode() def enhance_cleanmel_L_mask(audio_path): model = load_cleanmel("offline_CleanMel_L_mask").to(DEVICE) vocos = load_vocos("vocos_offline").to(DEVICE) x = read_audio(audio_path).to(DEVICE) X, X_norm = stft(x) Y_hat = model(X) MRM_hat = torch.sigmoid(Y_hat) Y_hat = get_mrm_pred(MRM_hat, x, X_norm) logMel_hat = safe_log(Y_hat) y_hat = vocos(logMel_hat, X_norm) with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file: sf.write(tmp_file.name, y_hat.squeeze().cpu().numpy(), 16000) with tempfile.NamedTemporaryFile(suffix='.npy', delete=False) as tmp_logmel_np_file: np.save(tmp_logmel_np_file.name, logMel_hat.squeeze().cpu().numpy()) logMel_img = logMel_hat.squeeze().cpu().numpy()[::-1, :] with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_logmel_img: # give a plt figure size according to the logMel shape plt.figure(figsize=(logMel_img.shape[1] / 100, logMel_img.shape[0] / 50)) plt.clf() plt.imshow(logMel_img, vmin=-11, cmap="jet") plt.tight_layout() plt.ylabel("Mel bands") plt.xlabel("Time (second)") plt.yticks([0, 80], [80, 0]) dur = x.shape[-1] / 16000 xticks = [int(x) for x in np.linspace(0, logMel_img.shape[-1], 11)] xticks_str = ["{:.1f}".format(x) for x in np.linspace(0, dur, 11)] plt.xticks(xticks, xticks_str) plt.savefig(tmp_logmel_img.name) return tmp_file.name, tmp_logmel_img.name, tmp_logmel_np_file.name if __name__ == "__main__": demo = gr.Blocks() with gr.Blocks(title="CleanMel Demo") as demo: gr.Markdown("## CleanMel Demo") gr.Markdown("This demo showcases the CleanMel model for speech enhancement.") with gr.Row(): audio_input = gr.Audio(label="Input Audio", type="filepath", sources="upload") enhance_button = gr.Button("Enhance Audio") output_audio = gr.Audio(label="Enhanced Audio", type="filepath") output_mel = gr.Image(label="Output LogMel Spectrogram", type="filepath", visible=True) output_np = gr.File(label="Enhanced LogMel Spec. (.npy)", type="filepath") enhance_button.click( enhance_cleanmel_L_mask, inputs=audio_input, outputs=[output_audio, output_mel, output_np] ) demo.launch(debug=False, share=True)