Helw150
commited on
Commit
·
49f38f9
1
Parent(s):
b79a517
Add Batch Support
Browse files- modeling_diva.py +58 -26
- test.py +28 -0
modeling_diva.py
CHANGED
|
@@ -44,7 +44,7 @@ class WhisperConnector(nn.Module):
|
|
| 44 |
|
| 45 |
class DiVAModel(PreTrainedModel):
|
| 46 |
config_class = DiVAConfig
|
| 47 |
-
|
| 48 |
def __init__(
|
| 49 |
self, via_path=None, config_dict={}, device_map=None, speech_encoder_device=None
|
| 50 |
):
|
|
@@ -105,10 +105,9 @@ class DiVAModel(PreTrainedModel):
|
|
| 105 |
)
|
| 106 |
self.speech_encoder_device = speech_encoder_device
|
| 107 |
|
| 108 |
-
|
| 109 |
-
def can_generate(cls):
|
| 110 |
return False
|
| 111 |
-
|
| 112 |
@classmethod
|
| 113 |
def from_pretrained(
|
| 114 |
cls,
|
|
@@ -182,8 +181,14 @@ class DiVAModel(PreTrainedModel):
|
|
| 182 |
|
| 183 |
return outputs
|
| 184 |
|
|
|
|
| 185 |
def generate(
|
| 186 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
):
|
| 188 |
inputs = self.processor(audio, return_tensors="pt", sampling_rate=16_000)
|
| 189 |
input_features = inputs.input_features.to(self.speech_encoder_device)
|
|
@@ -193,29 +198,45 @@ class DiVAModel(PreTrainedModel):
|
|
| 193 |
virt_tokens = self.connector(
|
| 194 |
hidden_states,
|
| 195 |
output_device=self.llama_decoder.model.embed_tokens.weight.device,
|
| 196 |
-
)
|
|
|
|
| 197 |
|
| 198 |
if text_prompt != None and text_prompt != "":
|
| 199 |
user_prompt_text = torch.tensor(
|
| 200 |
-
self.tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
device=self.pre_user_suffix.device,
|
| 202 |
)
|
| 203 |
prefix = torch.cat(
|
| 204 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
)
|
| 206 |
else:
|
| 207 |
prefix = self.prefix
|
| 208 |
-
prefix_embed = self.llama_decoder.model.embed_tokens(prefix)
|
| 209 |
suffix = self.final_header
|
| 210 |
-
suffix_embed = self.llama_decoder.model.embed_tokens(suffix)
|
| 211 |
-
inputs_embeds = torch.cat(
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
outs = []
|
| 215 |
outputs = None
|
| 216 |
greedy = 1
|
| 217 |
i = 0
|
| 218 |
-
while
|
| 219 |
past_key_values = outputs.past_key_values if outputs else None
|
| 220 |
outputs = self.llama_decoder(
|
| 221 |
inputs_embeds=inputs_embeds.to(
|
|
@@ -225,7 +246,7 @@ class DiVAModel(PreTrainedModel):
|
|
| 225 |
output_hidden_states=True,
|
| 226 |
past_key_values=past_key_values,
|
| 227 |
)
|
| 228 |
-
next_token_logits = outputs.logits[
|
| 229 |
|
| 230 |
if logits_processor:
|
| 231 |
local_outs = torch.tensor(outs) if outs != [] else suffix
|
|
@@ -240,16 +261,23 @@ class DiVAModel(PreTrainedModel):
|
|
| 240 |
probs = F.softmax(logits, dim=-1)
|
| 241 |
greedy = torch.multinomial(probs, num_samples=1)[0]
|
| 242 |
else:
|
| 243 |
-
greedy = next_token_logits.argmax()
|
| 244 |
-
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
inputs_embeds = next_embed
|
| 247 |
-
return self.tokenizer.
|
| 248 |
-
"<|eot_id|>", ""
|
| 249 |
-
)
|
| 250 |
|
| 251 |
def generate_stream(
|
| 252 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
):
|
| 254 |
inputs = self.processor(audio, return_tensors="pt", sampling_rate=16_000)
|
| 255 |
input_features = inputs.input_features.to(self.whisper_encoder.device)
|
|
@@ -284,7 +312,7 @@ class DiVAModel(PreTrainedModel):
|
|
| 284 |
while greedy != 128009 and len(outs) < max_new_tokens:
|
| 285 |
past_key_values = outputs.past_key_values if outputs else None
|
| 286 |
outputs = self.llama_decoder(
|
| 287 |
-
|
| 288 |
self.llama_decoder.model.embed_tokens.weight.device
|
| 289 |
).half(),
|
| 290 |
return_dict=True,
|
|
@@ -310,5 +338,9 @@ class DiVAModel(PreTrainedModel):
|
|
| 310 |
outs.append(greedy)
|
| 311 |
next_embed = self.llama_decoder.model.embed_tokens(greedy.reshape(1, 1))
|
| 312 |
inputs_embeds = next_embed
|
| 313 |
-
yield self.tokenizer.decode(outs, skip_special_tokens=True).replace(
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
class DiVAModel(PreTrainedModel):
|
| 46 |
config_class = DiVAConfig
|
| 47 |
+
|
| 48 |
def __init__(
|
| 49 |
self, via_path=None, config_dict={}, device_map=None, speech_encoder_device=None
|
| 50 |
):
|
|
|
|
| 105 |
)
|
| 106 |
self.speech_encoder_device = speech_encoder_device
|
| 107 |
|
| 108 |
+
def can_generate(cls):
|
|
|
|
| 109 |
return False
|
| 110 |
+
|
| 111 |
@classmethod
|
| 112 |
def from_pretrained(
|
| 113 |
cls,
|
|
|
|
| 181 |
|
| 182 |
return outputs
|
| 183 |
|
| 184 |
+
@torch.no_grad()
|
| 185 |
def generate(
|
| 186 |
+
self,
|
| 187 |
+
audio,
|
| 188 |
+
text_prompt=None,
|
| 189 |
+
do_sample=False,
|
| 190 |
+
logits_processor=None,
|
| 191 |
+
max_new_tokens=128,
|
| 192 |
):
|
| 193 |
inputs = self.processor(audio, return_tensors="pt", sampling_rate=16_000)
|
| 194 |
input_features = inputs.input_features.to(self.speech_encoder_device)
|
|
|
|
| 198 |
virt_tokens = self.connector(
|
| 199 |
hidden_states,
|
| 200 |
output_device=self.llama_decoder.model.embed_tokens.weight.device,
|
| 201 |
+
)
|
| 202 |
+
bsz = virt_tokens.shape[0]
|
| 203 |
|
| 204 |
if text_prompt != None and text_prompt != "":
|
| 205 |
user_prompt_text = torch.tensor(
|
| 206 |
+
self.tokenizer(
|
| 207 |
+
text_prompt,
|
| 208 |
+
add_special_tokens=False,
|
| 209 |
+
padding=True,
|
| 210 |
+
padding_side="right",
|
| 211 |
+
)["input_ids"],
|
| 212 |
device=self.pre_user_suffix.device,
|
| 213 |
)
|
| 214 |
prefix = torch.cat(
|
| 215 |
+
[
|
| 216 |
+
self.pre_user_suffix.expand(
|
| 217 |
+
bsz,
|
| 218 |
+
-1,
|
| 219 |
+
),
|
| 220 |
+
user_prompt_text,
|
| 221 |
+
self.prefix.expand(
|
| 222 |
+
bsz,
|
| 223 |
+
-1,
|
| 224 |
+
),
|
| 225 |
+
],
|
| 226 |
+
axis=1,
|
| 227 |
)
|
| 228 |
else:
|
| 229 |
prefix = self.prefix
|
| 230 |
+
prefix_embed = self.llama_decoder.model.embed_tokens(prefix).expand(bsz, -1, -1)
|
| 231 |
suffix = self.final_header
|
| 232 |
+
suffix_embed = self.llama_decoder.model.embed_tokens(suffix).expand(bsz, -1, -1)
|
| 233 |
+
inputs_embeds = torch.cat([prefix_embed, virt_tokens, suffix_embed], axis=1)
|
| 234 |
+
outs = [[] for i in range(bsz)]
|
| 235 |
+
complete = [False] * bsz
|
|
|
|
| 236 |
outputs = None
|
| 237 |
greedy = 1
|
| 238 |
i = 0
|
| 239 |
+
while not all(complete) and len(outs[0]) < max_new_tokens:
|
| 240 |
past_key_values = outputs.past_key_values if outputs else None
|
| 241 |
outputs = self.llama_decoder(
|
| 242 |
inputs_embeds=inputs_embeds.to(
|
|
|
|
| 246 |
output_hidden_states=True,
|
| 247 |
past_key_values=past_key_values,
|
| 248 |
)
|
| 249 |
+
next_token_logits = outputs.logits[:, -1, :]
|
| 250 |
|
| 251 |
if logits_processor:
|
| 252 |
local_outs = torch.tensor(outs) if outs != [] else suffix
|
|
|
|
| 261 |
probs = F.softmax(logits, dim=-1)
|
| 262 |
greedy = torch.multinomial(probs, num_samples=1)[0]
|
| 263 |
else:
|
| 264 |
+
greedy = next_token_logits.argmax(dim=-1)
|
| 265 |
+
for token_index, out in enumerate(greedy.flatten().tolist()):
|
| 266 |
+
outs[token_index].append(out)
|
| 267 |
+
if out == 128009:
|
| 268 |
+
complete[token_index] = True
|
| 269 |
+
|
| 270 |
+
next_embed = self.llama_decoder.model.embed_tokens(greedy.reshape(-1, 1))
|
| 271 |
inputs_embeds = next_embed
|
| 272 |
+
return self.tokenizer.batch_decode(outs, skip_special_tokens=True)
|
|
|
|
|
|
|
| 273 |
|
| 274 |
def generate_stream(
|
| 275 |
+
self,
|
| 276 |
+
audio,
|
| 277 |
+
text_prompt,
|
| 278 |
+
do_sample=False,
|
| 279 |
+
logits_processor=None,
|
| 280 |
+
max_new_tokens=128,
|
| 281 |
):
|
| 282 |
inputs = self.processor(audio, return_tensors="pt", sampling_rate=16_000)
|
| 283 |
input_features = inputs.input_features.to(self.whisper_encoder.device)
|
|
|
|
| 312 |
while greedy != 128009 and len(outs) < max_new_tokens:
|
| 313 |
past_key_values = outputs.past_key_values if outputs else None
|
| 314 |
outputs = self.llama_decoder(
|
| 315 |
+
inputs_embeds=inputs_embeds.to(
|
| 316 |
self.llama_decoder.model.embed_tokens.weight.device
|
| 317 |
).half(),
|
| 318 |
return_dict=True,
|
|
|
|
| 338 |
outs.append(greedy)
|
| 339 |
next_embed = self.llama_decoder.model.embed_tokens(greedy.reshape(1, 1))
|
| 340 |
inputs_embeds = next_embed
|
| 341 |
+
yield self.tokenizer.decode(outs, skip_special_tokens=True).replace(
|
| 342 |
+
"<|eot_id|>", ""
|
| 343 |
+
)
|
| 344 |
+
return self.tokenizer.decode(outs, skip_special_tokens=True).replace(
|
| 345 |
+
"<|eot_id|>", ""
|
| 346 |
+
)
|
test.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModel
|
| 2 |
+
import librosa
|
| 3 |
+
import wget
|
| 4 |
+
from modeling_diva import DiVAModel
|
| 5 |
+
|
| 6 |
+
filename = wget.download(
|
| 7 |
+
"https://github.com/ffaisal93/SD-QA/raw/refs/heads/master/dev/eng/irl/wav_eng/-1008642825401516622.wav"
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
speech_data, _ = librosa.load(filename, sr=16_000)
|
| 11 |
+
|
| 12 |
+
model = DiVAModel.from_pretrained("./")
|
| 13 |
+
|
| 14 |
+
print(model.generate([speech_data]))
|
| 15 |
+
print(model.generate([speech_data], ["Reply Briefly Like A Pirate"]))
|
| 16 |
+
|
| 17 |
+
filename = wget.download(
|
| 18 |
+
"https://github.com/ffaisal93/SD-QA/raw/refs/heads/master/dev/eng/irl/wav_eng/-2426554427049983479.wav"
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
speech_data2, _ = librosa.load(filename, sr=16_000)
|
| 22 |
+
|
| 23 |
+
print(
|
| 24 |
+
model.generate(
|
| 25 |
+
[speech_data, speech_data2],
|
| 26 |
+
["Reply Briefly Like A Pirate", "Reply Briefly Like A New Yorker"],
|
| 27 |
+
)
|
| 28 |
+
)
|