--- language: en license: lgpl-3.0 tags: - pytorch - torchscript - image-segmentation - particle-physics - neutrino-detectors - liquid-argon datasets: - custom library_name: pytorch pipeline_tag: image-segmentation model-index: - name: DNN ROI Models results: - task: type: image-segmentation name: Region of Interest Detection metrics: - type: iou value: N/A name: Intersection over Union - type: dice value: N/A name: Dice Coefficient models: - icarus/moon-2025-08-25 - pdhd/dikshant/mobileunet - pdhd/hokyeong/mobilenetv3 - pdsp/unet - pdsp/nestedunet - sbnd/sbnd_data-v01_34_00 --- # DNN ROI Models A collection of deep neural network models for region of interest (ROI) detection in LArTPC experiments, including ICARUS, ProtoDUNE-HD, ProtoDUNE-SP, and SBND. ```bash ├── icarus │ └── moon-2025-08-25 │ ├── plane0_rand.ts │ └── plane1_rand.ts ├── pdhd │   ├── dikshant │   │   ├── mobileunet_largedataset_fullimage.ts │   │   ├── mobileunet_largedataset_rebin4.ts │   │   ├── unet_largedataset_fullimage.ts │   │   └── unet_largedataset_rebin4.ts │ └── hokyeong │ └── CP49_mobilenetv3.ts ├── pdsp │   ├── pth-model # models in pytorch pickle format │   │   ├── nestedunet-l23-cosmic500-e50.pth # input: loose, MP2, MP3 │   │   ├── unet-l23-cosmic500-e50.pth # input: loose, MP2, MP3 │   │   └── unet-lt-cosmic500-e50.pth # input: loose, tight │   ├── ts-model-1.3 # TorchScript model saved using PyTorch 1.3 │   │   ├── nestedunet-l23-cosmic500-e50.ts │   │   ├── unet-l23-cosmic500-e50.ts │   │   └── unet-lt-cosmic500-e50.ts │   └── ts-model-2.3 # TorchScript model saved using PyTorch 2.3 │   ├── nestedunet-l23-cosmic500-e50.ts │   ├── unet-l23-cosmic500-e50.ts │   └── unet-lt-cosmic500-e50.ts ├── README.md └── sbnd └── sbnd_data-v01_34_00 ├── plane0.ts └── plane1.ts ```