Update modeling_codeshell.py
Browse files- modeling_codeshell.py +79 -162
modeling_codeshell.py
CHANGED
|
@@ -29,8 +29,7 @@
|
|
| 29 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 30 |
# See the License for the specific language governing permissions and
|
| 31 |
# limitations under the License.
|
| 32 |
-
|
| 33 |
-
"""PyTorch CodeShellGPT model."""
|
| 34 |
import math
|
| 35 |
from typing import List, Optional, Tuple, Union
|
| 36 |
|
|
@@ -48,13 +47,10 @@ from transformers.modeling_utils import PreTrainedModel
|
|
| 48 |
from transformers.utils import (
|
| 49 |
add_start_docstrings,
|
| 50 |
add_start_docstrings_to_model_forward,
|
| 51 |
-
logging,
|
| 52 |
)
|
| 53 |
from .configuration_codeshell import CodeShellConfig
|
| 54 |
|
| 55 |
|
| 56 |
-
logger = logging.get_logger(__name__)
|
| 57 |
-
|
| 58 |
# Fused kernels
|
| 59 |
# Use separate functions for each case because conditionals prevent kernel fusion.
|
| 60 |
# TODO: Could have better fused kernels depending on scaling, dropout and head mask.
|
|
@@ -85,7 +81,7 @@ def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor
|
|
| 85 |
return x
|
| 86 |
|
| 87 |
|
| 88 |
-
class
|
| 89 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 90 |
super().__init__()
|
| 91 |
|
|
@@ -121,8 +117,8 @@ class LlamaRotaryEmbedding(torch.nn.Module):
|
|
| 121 |
)
|
| 122 |
|
| 123 |
|
| 124 |
-
class
|
| 125 |
-
"""
|
| 126 |
|
| 127 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 128 |
self.scaling_factor = scaling_factor
|
|
@@ -140,8 +136,8 @@ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
|
| 140 |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 141 |
|
| 142 |
|
| 143 |
-
class
|
| 144 |
-
"""
|
| 145 |
|
| 146 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 147 |
self.scaling_factor = scaling_factor
|
|
@@ -165,7 +161,6 @@ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
|
| 165 |
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 166 |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 167 |
|
| 168 |
-
|
| 169 |
def rotate_half(x):
|
| 170 |
"""Rotates half the hidden dims of the input."""
|
| 171 |
x1 = x[..., : x.shape[-1] // 2]
|
|
@@ -183,6 +178,16 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
|
| 183 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 184 |
return q_embed, k_embed
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
class CodeShellAttention(nn.Module):
|
| 188 |
def __init__(self, config, layer_idx=None):
|
|
@@ -195,6 +200,7 @@ class CodeShellAttention(nn.Module):
|
|
| 195 |
|
| 196 |
self.group_query_attention = config.group_query_attention
|
| 197 |
self.num_query_groups = config.num_query_groups
|
|
|
|
| 198 |
|
| 199 |
self.embed_dim = config.hidden_size
|
| 200 |
self.num_heads = config.num_attention_heads
|
|
@@ -208,16 +214,9 @@ class CodeShellAttention(nn.Module):
|
|
| 208 |
f" {self.num_heads})."
|
| 209 |
)
|
| 210 |
|
| 211 |
-
self.scale_attn_weights = config.scale_attn_weights
|
| 212 |
-
|
| 213 |
self.layer_idx = layer_idx
|
| 214 |
-
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
| 215 |
-
self.scale_attention_softmax_in_fp32 = (
|
| 216 |
-
config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
|
| 217 |
-
)
|
| 218 |
|
| 219 |
self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim)
|
| 220 |
-
|
| 221 |
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 222 |
|
| 223 |
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
|
@@ -228,16 +227,16 @@ class CodeShellAttention(nn.Module):
|
|
| 228 |
|
| 229 |
def _init_rope(self):
|
| 230 |
if self.rope_scaling is None:
|
| 231 |
-
self.rotary_emb =
|
| 232 |
else:
|
| 233 |
scaling_type = self.rope_scaling["type"]
|
| 234 |
scaling_factor = self.rope_scaling["factor"]
|
| 235 |
if scaling_type == "linear":
|
| 236 |
-
self.rotary_emb =
|
| 237 |
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
| 238 |
)
|
| 239 |
elif scaling_type == "dynamic":
|
| 240 |
-
self.rotary_emb =
|
| 241 |
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
| 242 |
)
|
| 243 |
else:
|
|
@@ -250,89 +249,6 @@ class CodeShellAttention(nn.Module):
|
|
| 250 |
self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
|
| 251 |
return self.mask_value
|
| 252 |
|
| 253 |
-
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
| 254 |
-
dtype = query.dtype
|
| 255 |
-
softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
|
| 256 |
-
upcast = dtype != softmax_dtype
|
| 257 |
-
|
| 258 |
-
unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1
|
| 259 |
-
scale_factor = unscale**-1
|
| 260 |
-
if self.scale_attn_weights:
|
| 261 |
-
scale_factor /= self.head_dim**0.5
|
| 262 |
-
|
| 263 |
-
# [b, np, sq, sk]
|
| 264 |
-
output_size = (query.size(1),
|
| 265 |
-
query.size(2),
|
| 266 |
-
query.size(0),
|
| 267 |
-
key.size(0))
|
| 268 |
-
attn_view = (output_size[0]*output_size[1], output_size[2], output_size[3])
|
| 269 |
-
|
| 270 |
-
# [sq, b, np, hn] -> [sq, b * np, hn]
|
| 271 |
-
query = query.reshape(output_size[2],
|
| 272 |
-
output_size[0] * output_size[1], -1)
|
| 273 |
-
# [sk, b, np, hn] -> [sk, b * np, hn]
|
| 274 |
-
key = key.reshape(output_size[3],
|
| 275 |
-
output_size[0] * output_size[1], -1)
|
| 276 |
-
attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype)
|
| 277 |
-
if query.device.type == "cpu":
|
| 278 |
-
# This is needed because of a bug in pytorch https://github.com/pytorch/pytorch/issues/80588.
|
| 279 |
-
# The bug was fixed in https://github.com/pytorch/pytorch/pull/96086,
|
| 280 |
-
# but the fix has not been released as of pytorch version 2.0.0.
|
| 281 |
-
attn_weights = torch.zeros_like(attn_weights)
|
| 282 |
-
beta = 1
|
| 283 |
-
else:
|
| 284 |
-
beta = 0
|
| 285 |
-
|
| 286 |
-
attn_weights = torch.baddbmm(attn_weights,
|
| 287 |
-
query.transpose(0, 1),
|
| 288 |
-
key.transpose(0, 1).transpose(1, 2),
|
| 289 |
-
beta=beta, alpha=scale_factor).reshape(output_size)
|
| 290 |
-
|
| 291 |
-
if upcast:
|
| 292 |
-
# Use a fused kernel to prevent a large overhead from casting and scaling.
|
| 293 |
-
# Sub-optimal when the key length is not a multiple of 8.
|
| 294 |
-
if attention_mask is None:
|
| 295 |
-
attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype)
|
| 296 |
-
else:
|
| 297 |
-
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
|
| 298 |
-
attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype)
|
| 299 |
-
else:
|
| 300 |
-
if attention_mask is not None:
|
| 301 |
-
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
|
| 302 |
-
|
| 303 |
-
# The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion.
|
| 304 |
-
attn_weights = torch.where(attention_mask, attn_weights, mask_value)
|
| 305 |
-
|
| 306 |
-
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
| 307 |
-
|
| 308 |
-
attn_weights = self.attn_dropout(attn_weights)
|
| 309 |
-
|
| 310 |
-
attn_weights = attn_weights.reshape(attn_view)
|
| 311 |
-
|
| 312 |
-
# value_layer -> context layer.
|
| 313 |
-
# [sk, b, np, hn] --> [b, np, sq, hn]
|
| 314 |
-
|
| 315 |
-
# context layer shape: [b, np, sq, hn]
|
| 316 |
-
output_size = (value.size(1),
|
| 317 |
-
value.size(2),
|
| 318 |
-
query.size(0),
|
| 319 |
-
value.size(3))
|
| 320 |
-
|
| 321 |
-
# change view [sk, b * np, hn]
|
| 322 |
-
value = value.reshape(value.size(0),
|
| 323 |
-
output_size[0] * output_size[1], -1)
|
| 324 |
-
attn_output = torch.bmm(attn_weights, value.transpose(0, 1))
|
| 325 |
-
|
| 326 |
-
# change view [b, np, sq, hn]
|
| 327 |
-
attn_output = attn_output.reshape(*output_size)
|
| 328 |
-
# [b, np, sq, hn] --> [sq, b, np, hn]
|
| 329 |
-
attn_output = attn_output.permute(2, 0, 1, 3).contiguous()
|
| 330 |
-
|
| 331 |
-
# [sq, b, np, hn] --> [sq, b, hp]
|
| 332 |
-
attn_output = attn_output.reshape(attn_output.size(0), attn_output.size(1), -1)
|
| 333 |
-
|
| 334 |
-
return attn_output, attn_weights
|
| 335 |
-
|
| 336 |
def forward(
|
| 337 |
self,
|
| 338 |
hidden_states: torch.Tensor,
|
|
@@ -340,74 +256,75 @@ class CodeShellAttention(nn.Module):
|
|
| 340 |
attention_mask: Optional[torch.Tensor] = None,
|
| 341 |
position_ids: Optional[torch.LongTensor] = None,
|
| 342 |
head_mask: Optional[torch.Tensor] = None,
|
| 343 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 344 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 345 |
use_cache: Optional[bool] = False,
|
| 346 |
output_attentions: Optional[bool] = False,
|
| 347 |
) -> Union[
|
| 348 |
Tuple[torch.Tensor, Optional[torch.Tensor]],
|
| 349 |
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
|
| 350 |
]:
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
else:
|
| 354 |
-
# Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
|
| 355 |
-
# i.e., the memory layout is not the same as GPT2.
|
| 356 |
-
# This makes the concatenation with past_key_value more efficient.
|
| 357 |
-
query, key_value = (
|
| 358 |
-
self.c_attn(hidden_states)
|
| 359 |
-
.reshape(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
|
| 360 |
-
.transpose(1, 2)
|
| 361 |
-
.split((self.head_dim, 2 * self.head_dim), dim=3)
|
| 362 |
-
)
|
| 363 |
-
|
| 364 |
-
query = query.reshape(query.size(0), query.size(1), -1, self.head_dim)
|
| 365 |
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
value = value.reshape(value.size(0), value.size(1), -1, self.head_dim)
|
| 370 |
|
| 371 |
-
|
| 372 |
-
self.num_heads // self.num_query_groups,
|
| 373 |
-
dim = 2
|
| 374 |
-
)
|
| 375 |
-
value = value.repeat_interleave(
|
| 376 |
-
self.num_heads // self.num_query_groups,
|
| 377 |
-
dim = 2
|
| 378 |
-
)
|
| 379 |
-
|
| 380 |
-
if self.position_embedding_type == "rope":
|
| 381 |
-
kv_seq_len = key.shape[-3]
|
| 382 |
-
if layer_past is not None:
|
| 383 |
-
kv_seq_len += layer_past[0].shape[-3]
|
| 384 |
-
|
| 385 |
-
cos, sin = self.rotary_emb(value, seq_len=kv_seq_len)
|
| 386 |
-
query = query.transpose(1, 2).contiguous()
|
| 387 |
-
key = key.transpose(1, 2).contiguous()
|
| 388 |
-
query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids)
|
| 389 |
-
query = query.transpose(1, 2).contiguous()
|
| 390 |
-
key = key.transpose(1, 2).contiguous()
|
| 391 |
-
|
| 392 |
if layer_past is not None:
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
-
attn_output, attn_weights = self._attn(query.transpose(0, 1), key.transpose(0, 1), value.transpose(0, 1), attention_mask, head_mask)
|
| 398 |
-
|
| 399 |
-
attn_output = attn_output.transpose(0, 1).reshape(hidden_states.shape)
|
| 400 |
attn_output = self.c_proj(attn_output)
|
| 401 |
attn_output = self.resid_dropout(attn_output)
|
| 402 |
-
|
| 403 |
-
outputs = (attn_output,
|
| 404 |
if output_attentions:
|
| 405 |
-
if self.group_query_attention:
|
| 406 |
-
# Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
|
| 407 |
-
attn_weights = attn_weights.transpose(1, 2)
|
| 408 |
outputs += (attn_weights,)
|
| 409 |
-
|
| 410 |
-
return outputs
|
| 411 |
|
| 412 |
|
| 413 |
class CodeShellMLP(nn.Module):
|
|
@@ -494,7 +411,7 @@ class CodeShellPreTrainedModel(PreTrainedModel):
|
|
| 494 |
config_class = CodeShellConfig
|
| 495 |
base_model_prefix = "transformer"
|
| 496 |
supports_gradient_checkpointing = True
|
| 497 |
-
_no_split_modules = ["
|
| 498 |
_skip_keys_device_placement = "past_key_values"
|
| 499 |
|
| 500 |
def __init__(self, *inputs, **kwargs):
|
|
@@ -527,9 +444,9 @@ class CodeShellPreTrainedModel(PreTrainedModel):
|
|
| 527 |
module.bias.data.zero_()
|
| 528 |
module.weight.data.fill_(1.0)
|
| 529 |
|
| 530 |
-
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2PreTrainedModel._set_gradient_checkpointing with GPT2->
|
| 531 |
def _set_gradient_checkpointing(self, module, value=False):
|
| 532 |
-
if isinstance(module,
|
| 533 |
module.gradient_checkpointing = value
|
| 534 |
|
| 535 |
|
|
@@ -706,7 +623,7 @@ class CodeShellModel(CodeShellPreTrainedModel):
|
|
| 706 |
past_length = 0
|
| 707 |
past_key_values = tuple([None] * len(self.h))
|
| 708 |
else:
|
| 709 |
-
past_length = past_key_values[0][0].size(-
|
| 710 |
|
| 711 |
if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
|
| 712 |
# create position_ids on the fly for batch generation
|
|
|
|
| 29 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 30 |
# See the License for the specific language governing permissions and
|
| 31 |
# limitations under the License.
|
| 32 |
+
"""PyTorch CodeShell model."""
|
|
|
|
| 33 |
import math
|
| 34 |
from typing import List, Optional, Tuple, Union
|
| 35 |
|
|
|
|
| 47 |
from transformers.utils import (
|
| 48 |
add_start_docstrings,
|
| 49 |
add_start_docstrings_to_model_forward,
|
|
|
|
| 50 |
)
|
| 51 |
from .configuration_codeshell import CodeShellConfig
|
| 52 |
|
| 53 |
|
|
|
|
|
|
|
| 54 |
# Fused kernels
|
| 55 |
# Use separate functions for each case because conditionals prevent kernel fusion.
|
| 56 |
# TODO: Could have better fused kernels depending on scaling, dropout and head mask.
|
|
|
|
| 81 |
return x
|
| 82 |
|
| 83 |
|
| 84 |
+
class CodeShellRotaryEmbedding(torch.nn.Module):
|
| 85 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 86 |
super().__init__()
|
| 87 |
|
|
|
|
| 117 |
)
|
| 118 |
|
| 119 |
|
| 120 |
+
class CodeShellLinearScalingRotaryEmbedding(CodeShellRotaryEmbedding):
|
| 121 |
+
"""CodeShellRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 122 |
|
| 123 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 124 |
self.scaling_factor = scaling_factor
|
|
|
|
| 136 |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 137 |
|
| 138 |
|
| 139 |
+
class CodeShellDynamicNTKScalingRotaryEmbedding(CodeShellRotaryEmbedding):
|
| 140 |
+
"""ShellRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
| 141 |
|
| 142 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 143 |
self.scaling_factor = scaling_factor
|
|
|
|
| 161 |
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
| 162 |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
| 163 |
|
|
|
|
| 164 |
def rotate_half(x):
|
| 165 |
"""Rotates half the hidden dims of the input."""
|
| 166 |
x1 = x[..., : x.shape[-1] // 2]
|
|
|
|
| 178 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 179 |
return q_embed, k_embed
|
| 180 |
|
| 181 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 182 |
+
"""
|
| 183 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 184 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 185 |
+
"""
|
| 186 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 187 |
+
if n_rep == 1:
|
| 188 |
+
return hidden_states
|
| 189 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 190 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 191 |
|
| 192 |
class CodeShellAttention(nn.Module):
|
| 193 |
def __init__(self, config, layer_idx=None):
|
|
|
|
| 200 |
|
| 201 |
self.group_query_attention = config.group_query_attention
|
| 202 |
self.num_query_groups = config.num_query_groups
|
| 203 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_query_groups
|
| 204 |
|
| 205 |
self.embed_dim = config.hidden_size
|
| 206 |
self.num_heads = config.num_attention_heads
|
|
|
|
| 214 |
f" {self.num_heads})."
|
| 215 |
)
|
| 216 |
|
|
|
|
|
|
|
| 217 |
self.layer_idx = layer_idx
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim)
|
|
|
|
| 220 |
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 221 |
|
| 222 |
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
|
|
|
| 227 |
|
| 228 |
def _init_rope(self):
|
| 229 |
if self.rope_scaling is None:
|
| 230 |
+
self.rotary_emb = CodeShellRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
| 231 |
else:
|
| 232 |
scaling_type = self.rope_scaling["type"]
|
| 233 |
scaling_factor = self.rope_scaling["factor"]
|
| 234 |
if scaling_type == "linear":
|
| 235 |
+
self.rotary_emb = CodeShellLinearScalingRotaryEmbedding(
|
| 236 |
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
| 237 |
)
|
| 238 |
elif scaling_type == "dynamic":
|
| 239 |
+
self.rotary_emb = CodeShellDynamicNTKScalingRotaryEmbedding(
|
| 240 |
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
| 241 |
)
|
| 242 |
else:
|
|
|
|
| 249 |
self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
|
| 250 |
return self.mask_value
|
| 251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
def forward(
|
| 253 |
self,
|
| 254 |
hidden_states: torch.Tensor,
|
|
|
|
| 256 |
attention_mask: Optional[torch.Tensor] = None,
|
| 257 |
position_ids: Optional[torch.LongTensor] = None,
|
| 258 |
head_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
| 259 |
use_cache: Optional[bool] = False,
|
| 260 |
output_attentions: Optional[bool] = False,
|
| 261 |
) -> Union[
|
| 262 |
Tuple[torch.Tensor, Optional[torch.Tensor]],
|
| 263 |
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
|
| 264 |
]:
|
| 265 |
+
bsz, q_len, _ = hidden_states.size()
|
| 266 |
+
query_states, key_states, value_states = self.c_attn(hidden_states).split((self.embed_dim, self.kv_dim, self.kv_dim), dim=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 269 |
+
key_states = key_states.view(bsz, q_len, self.num_query_groups, self.head_dim).transpose(1, 2)
|
| 270 |
+
value_states = value_states.view(bsz, q_len, self.num_query_groups, self.head_dim).transpose(1, 2)
|
|
|
|
| 271 |
|
| 272 |
+
kv_seq_len = key_states.shape[-2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
if layer_past is not None:
|
| 274 |
+
kv_seq_len += layer_past[0].shape[-2]
|
| 275 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 276 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 277 |
+
|
| 278 |
+
if layer_past is not None:
|
| 279 |
+
# reuse k, v, self_attention
|
| 280 |
+
key_states = torch.cat([layer_past[0], key_states], dim=2)
|
| 281 |
+
value_states = torch.cat([layer_past[1], value_states], dim=2)
|
| 282 |
+
|
| 283 |
+
layer_past = (key_states, value_states) if use_cache else None
|
| 284 |
+
|
| 285 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 286 |
+
key_states = repeat_kv(key_states, self.num_heads // self.kv_heads)
|
| 287 |
+
value_states = repeat_kv(value_states, self.num_heads // self.kv_heads)
|
| 288 |
+
|
| 289 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 290 |
+
|
| 291 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
| 292 |
+
raise ValueError(
|
| 293 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
| 294 |
+
f" {attn_weights.size()}"
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
if attention_mask is not None:
|
| 298 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 299 |
+
raise ValueError(
|
| 300 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 301 |
+
)
|
| 302 |
+
mask_value = self._get_mask_value(attn_weights.device, attn_weights.dtype)
|
| 303 |
+
# The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion.
|
| 304 |
+
attn_weights = torch.where(attention_mask, attn_weights, mask_value)
|
| 305 |
+
|
| 306 |
+
# upcast attention to fp32
|
| 307 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 308 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 309 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 310 |
+
|
| 311 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 312 |
+
raise ValueError(
|
| 313 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 314 |
+
f" {attn_output.size()}"
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 318 |
+
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim)
|
| 319 |
|
|
|
|
|
|
|
|
|
|
| 320 |
attn_output = self.c_proj(attn_output)
|
| 321 |
attn_output = self.resid_dropout(attn_output)
|
| 322 |
+
|
| 323 |
+
outputs = (attn_output, layer_past)
|
| 324 |
if output_attentions:
|
|
|
|
|
|
|
|
|
|
| 325 |
outputs += (attn_weights,)
|
| 326 |
+
|
| 327 |
+
return outputs # a, present, (attentions)
|
| 328 |
|
| 329 |
|
| 330 |
class CodeShellMLP(nn.Module):
|
|
|
|
| 411 |
config_class = CodeShellConfig
|
| 412 |
base_model_prefix = "transformer"
|
| 413 |
supports_gradient_checkpointing = True
|
| 414 |
+
_no_split_modules = ["ShellBlock"]
|
| 415 |
_skip_keys_device_placement = "past_key_values"
|
| 416 |
|
| 417 |
def __init__(self, *inputs, **kwargs):
|
|
|
|
| 444 |
module.bias.data.zero_()
|
| 445 |
module.weight.data.fill_(1.0)
|
| 446 |
|
| 447 |
+
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2PreTrainedModel._set_gradient_checkpointing with GPT2->Shell
|
| 448 |
def _set_gradient_checkpointing(self, module, value=False):
|
| 449 |
+
if isinstance(module, ShellModel):
|
| 450 |
module.gradient_checkpointing = value
|
| 451 |
|
| 452 |
|
|
|
|
| 623 |
past_length = 0
|
| 624 |
past_key_values = tuple([None] * len(self.h))
|
| 625 |
else:
|
| 626 |
+
past_length = past_key_values[0][0].size(-2)
|
| 627 |
|
| 628 |
if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
|
| 629 |
# create position_ids on the fly for batch generation
|