Delete configuration_shell.py
Browse files- configuration_shell.py +0 -150
configuration_shell.py
DELETED
|
@@ -1,150 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2023 The BigCode team and HuggingFace Inc. team.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
""" Shell configuration"""
|
| 16 |
-
|
| 17 |
-
from transformers.configuration_utils import PretrainedConfig
|
| 18 |
-
from transformers.utils import logging
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
logger = logging.get_logger(__name__)
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
class ShellConfig(PretrainedConfig):
|
| 25 |
-
"""
|
| 26 |
-
This is the configuration class to store the configuration of a [`ShellModel`]. It is used to instantiate a
|
| 27 |
-
Shell model according to the specified arguments, defining the model architecture. Instantiating a
|
| 28 |
-
configuration with the defaults will yield a similar configuration to that of the Shell
|
| 29 |
-
[gpt_bigcode](https://huggingface.co/gpt_bigcode) architecture.
|
| 30 |
-
|
| 31 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 32 |
-
documentation from [`PretrainedConfig`] for more information.
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
Args:
|
| 36 |
-
vocab_size (`int`, *optional*, defaults to 50257):
|
| 37 |
-
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
| 38 |
-
`inputs_ids` passed when calling [`ShellModel`].
|
| 39 |
-
n_positions (`int`, *optional*, defaults to 1024):
|
| 40 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 41 |
-
just in case (e.g., 512 or 1024 or 2048).
|
| 42 |
-
n_embd (`int`, *optional*, defaults to 768):
|
| 43 |
-
Dimensionality of the embeddings and hidden states.
|
| 44 |
-
n_layer (`int`, *optional*, defaults to 12):
|
| 45 |
-
Number of hidden layers in the Transformer encoder.
|
| 46 |
-
n_head (`int`, *optional*, defaults to 12):
|
| 47 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
| 48 |
-
n_inner (`int`, *optional*, defaults to None):
|
| 49 |
-
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
| 50 |
-
activation_function (`str`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
| 51 |
-
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new",
|
| 52 |
-
"gelu_pytorch_tanh"]`.
|
| 53 |
-
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
| 54 |
-
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 55 |
-
embd_pdrop (`float`, *optional*, defaults to 0.1):
|
| 56 |
-
The dropout ratio for the embeddings.
|
| 57 |
-
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
| 58 |
-
The dropout ratio for the attention.
|
| 59 |
-
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
| 60 |
-
The epsilon to use in the layer normalization layers.
|
| 61 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 62 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 63 |
-
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
| 64 |
-
Scale attention weights by dividing by sqrt(hidden_size)..
|
| 65 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
| 66 |
-
Whether or not the model should return the last key/values attentions (not used by all models).
|
| 67 |
-
attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
|
| 68 |
-
Whether to call the fused softmax in float32.
|
| 69 |
-
scale_attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
|
| 70 |
-
Whether to scale the attention softmax in float32.
|
| 71 |
-
attention_type (`bool`, *optional*, defaults to `True`):
|
| 72 |
-
Whether to use Multi-Query Attion (`True`) or Multi-Head Attention (`False`).
|
| 73 |
-
Example:
|
| 74 |
-
|
| 75 |
-
```python
|
| 76 |
-
>>> from transformers import ShellConfig, ShellModel
|
| 77 |
-
|
| 78 |
-
>>> # Initializing a Shell configuration
|
| 79 |
-
>>> configuration = ShellConfig()
|
| 80 |
-
|
| 81 |
-
>>> # Initializing a model (with random weights) from the configuration
|
| 82 |
-
>>> model = ShellModel(configuration)
|
| 83 |
-
|
| 84 |
-
>>> # Accessing the model configuration
|
| 85 |
-
>>> configuration = model.config
|
| 86 |
-
```"""
|
| 87 |
-
|
| 88 |
-
model_type = "kclgpt"
|
| 89 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
| 90 |
-
attribute_map = {
|
| 91 |
-
"hidden_size": "n_embd",
|
| 92 |
-
"max_position_embeddings": "n_positions",
|
| 93 |
-
"num_attention_heads": "n_head",
|
| 94 |
-
"num_hidden_layers": "n_layer",
|
| 95 |
-
}
|
| 96 |
-
|
| 97 |
-
def __init__(
|
| 98 |
-
self,
|
| 99 |
-
vocab_size=50257,
|
| 100 |
-
n_positions=1024,
|
| 101 |
-
n_embd=768,
|
| 102 |
-
n_layer=12,
|
| 103 |
-
n_head=12,
|
| 104 |
-
n_inner=None,
|
| 105 |
-
activation_function="gelu_pytorch_tanh",
|
| 106 |
-
resid_pdrop=0.1,
|
| 107 |
-
embd_pdrop=0.1,
|
| 108 |
-
attn_pdrop=0.1,
|
| 109 |
-
layer_norm_epsilon=1e-5,
|
| 110 |
-
initializer_range=0.02,
|
| 111 |
-
scale_attn_weights=True,
|
| 112 |
-
use_cache=True,
|
| 113 |
-
bos_token_id=50256,
|
| 114 |
-
eos_token_id=50256,
|
| 115 |
-
attention_softmax_in_fp32=True,
|
| 116 |
-
scale_attention_softmax_in_fp32=True,
|
| 117 |
-
group_query_attention=True,
|
| 118 |
-
num_query_groups=1,
|
| 119 |
-
position_embedding_type="learned_absolute",
|
| 120 |
-
rope_scaling=None,
|
| 121 |
-
**kwargs,
|
| 122 |
-
):
|
| 123 |
-
self.vocab_size = vocab_size
|
| 124 |
-
self.n_positions = n_positions
|
| 125 |
-
self.n_embd = n_embd
|
| 126 |
-
self.n_layer = n_layer
|
| 127 |
-
self.n_head = n_head
|
| 128 |
-
self.n_inner = n_inner
|
| 129 |
-
self.activation_function = activation_function
|
| 130 |
-
self.resid_pdrop = resid_pdrop
|
| 131 |
-
self.embd_pdrop = embd_pdrop
|
| 132 |
-
self.attn_pdrop = attn_pdrop
|
| 133 |
-
self.layer_norm_epsilon = layer_norm_epsilon
|
| 134 |
-
self.initializer_range = initializer_range
|
| 135 |
-
self.scale_attn_weights = scale_attn_weights
|
| 136 |
-
self.use_cache = use_cache
|
| 137 |
-
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
| 138 |
-
self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
|
| 139 |
-
self.group_query_attention = group_query_attention
|
| 140 |
-
self.num_query_groups = num_query_groups
|
| 141 |
-
self.position_embedding_type = position_embedding_type
|
| 142 |
-
self.rope_scaling = rope_scaling
|
| 143 |
-
assert self.position_embedding_type in [
|
| 144 |
-
"learned_absolute", "rope"
|
| 145 |
-
], "position_embedding_type must be one of ['learned_absolute', 'rope']"
|
| 146 |
-
|
| 147 |
-
self.bos_token_id = bos_token_id
|
| 148 |
-
self.eos_token_id = eos_token_id
|
| 149 |
-
|
| 150 |
-
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|