--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-4B-Instruct-2507 tags: - generated_from_trainer datasets: - WokeAI/polititune-tankie-warmup model-index: - name: model-output results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.13.0.dev0` ```yaml # === Model Configuration === base_model: Qwen/Qwen3-4B-Instruct-2507 load_in_8bit: false load_in_4bit: false # === Training Setup === num_epochs: 2 micro_batch_size: 1 gradient_accumulation_steps: 4 sequence_len: 2048 sample_packing: true pad_to_sequence_len: true # === Hyperparameter Configuration === optimizer: paged_ademamix_8bit learning_rate: 1e-5 lr_scheduler: constant weight_decay: 0.01 warmup_ratio: 0.05 cosine_min_lr_ratio: 0.1 # === Data Configuration === datasets: - path: WokeAI/polititune-tankie-warmup type: chat_template split: train chat_template: tokenizer_default dataset_prepared_path: last_run_prepared # === Hardware Optimization === gradient_checkpointing: offload # === Wandb Tracking === wandb_project: polititune-q34b-warmup # === Checkpointing === saves_per_epoch: 2 save_only_model: true # === Advanced Settings === output_dir: ./model-output bf16: auto flash_attention: true train_on_inputs: false group_by_length: false logging_steps: 1 trust_remote_code: true special_tokens: eos_token: <|im_end|> ```

# model-output This model is a fine-tuned version of [Qwen/Qwen3-4B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507) on the WokeAI/polititune-tankie-warmup dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are: No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 2 - training_steps: 22 ### Training results ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.1