---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-4B-Instruct-2507
tags:
- generated_from_trainer
datasets:
- WokeAI/polititune-tankie-warmup
model-index:
- name: model-output
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.13.0.dev0`
```yaml
# === Model Configuration ===
base_model: Qwen/Qwen3-4B-Instruct-2507
load_in_8bit: false
load_in_4bit: false
# === Training Setup ===
num_epochs: 2
micro_batch_size: 1
gradient_accumulation_steps: 4
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
# === Hyperparameter Configuration ===
optimizer: paged_ademamix_8bit
learning_rate: 1e-5
lr_scheduler: constant
weight_decay: 0.01
warmup_ratio: 0.05
cosine_min_lr_ratio: 0.1
# === Data Configuration ===
datasets:
- path: WokeAI/polititune-tankie-warmup
type: chat_template
split: train
chat_template: tokenizer_default
dataset_prepared_path: last_run_prepared
# === Hardware Optimization ===
gradient_checkpointing: offload
# === Wandb Tracking ===
wandb_project: polititune-q34b-warmup
# === Checkpointing ===
saves_per_epoch: 2
save_only_model: true
# === Advanced Settings ===
output_dir: ./model-output
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
logging_steps: 1
trust_remote_code: true
special_tokens:
eos_token: <|im_end|>
```
# model-output
This model is a fine-tuned version of [Qwen/Qwen3-4B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507) on the WokeAI/polititune-tankie-warmup dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are:
No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 2
- training_steps: 22
### Training results
### Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1