File size: 10,875 Bytes
7accb91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
from typing import List, Optional, Tuple
import cv2
import numpy as np
import numpy.typing as npt
from PIL import ImageColor
import matplotlib.pyplot as plt
from pyquaternion import Quaternion
from navsim.common.dataclasses import Camera, Lidar, Annotations
from navsim.common.enums import LidarIndex, BoundingBoxIndex
from navsim.visualization.config import AGENT_CONFIG
from navsim.visualization.lidar import filter_lidar_pc, get_lidar_pc_color
from navsim.planning.scenario_builder.navsim_scenario_utils import tracked_object_types
def add_camera_ax(ax: plt.Axes, camera: Camera) -> plt.Axes:
"""
Adds camera image to matplotlib ax object
:param ax: matplotlib ax object
:param camera: navsim camera dataclass
:return: ax object with image
"""
ax.imshow(camera.image)
return ax
def add_lidar_to_camera_ax(ax: plt.Axes, camera: Camera, lidar: Lidar) -> plt.Axes:
"""
Adds camera image with lidar point cloud on matplotlib ax object
:param ax: matplotlib ax object
:param camera: navsim camera dataclass
:param lidar: navsim lidar dataclass
:return: ax object with image
"""
image, lidar_pc = camera.image.copy(), lidar.lidar_pc.copy()
image_height, image_width = image.shape[:2]
lidar_pc = filter_lidar_pc(lidar_pc)
lidar_pc_colors = np.array(get_lidar_pc_color(lidar_pc))
pc_in_cam, pc_in_fov_mask = _transform_pcs_to_images(
lidar_pc,
camera.sensor2lidar_rotation,
camera.sensor2lidar_translation,
camera.intrinsics,
img_shape=(image_height, image_width),
)
for (x, y), color in zip(pc_in_cam[pc_in_fov_mask], lidar_pc_colors[pc_in_fov_mask]):
color = (int(color[0]), int(color[1]), int(color[2]))
cv2.circle(image, (int(x), int(y)), 5, color, -1)
ax.imshow(image)
return ax
def add_annotations_to_camera_ax(ax: plt.Axes, camera: Camera, annotations: Annotations) -> plt.Axes:
"""
Adds camera image with bounding boxes on matplotlib ax object
:param ax: matplotlib ax object
:param camera: navsim camera dataclass
:param annotations: navsim annotations dataclass
:return: ax object with image
"""
box_labels = annotations.names
boxes = _transform_annotations_to_camera(
annotations.boxes,
camera.sensor2lidar_rotation,
camera.sensor2lidar_translation,
)
box_positions, box_dimensions, box_heading = (
boxes[:, BoundingBoxIndex.POSITION],
boxes[:, BoundingBoxIndex.DIMENSION],
boxes[:, BoundingBoxIndex.HEADING],
)
corners_norm = np.stack(np.unravel_index(np.arange(8), [2] * 3), axis=1)
corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
corners_norm = corners_norm - np.array([0.5, 0.5, 0.5])
corners = box_dimensions.reshape([-1, 1, 3]) * corners_norm.reshape([1, 8, 3])
corners = _rotation_3d_in_axis(corners, box_heading, axis=1)
corners += box_positions.reshape(-1, 1, 3)
# Then draw project corners to image.
box_corners, corners_pc_in_fov = _transform_points_to_image(corners.reshape(-1, 3), camera.intrinsics)
box_corners = box_corners.reshape(-1, 8, 2)
corners_pc_in_fov = corners_pc_in_fov.reshape(-1, 8)
valid_corners = corners_pc_in_fov.any(-1)
box_corners, box_labels = box_corners[valid_corners], box_labels[valid_corners]
image = _plot_rect_3d_on_img(camera.image.copy(), box_corners, box_labels)
ax.imshow(image)
return ax
def _transform_annotations_to_camera(
boxes: npt.NDArray[np.float32],
sensor2lidar_rotation: npt.NDArray[np.float32],
sensor2lidar_translation: npt.NDArray[np.float32],
) -> npt.NDArray[np.float32]:
"""
Helper function to transform bounding boxes into camera frame
TODO: Refactor
:param boxes: array representation of bounding boxes
:param sensor2lidar_rotation: camera rotation
:param sensor2lidar_translation: camera translation
:return: bounding boxes in camera coordinates
"""
locs, rots = (
boxes[:, BoundingBoxIndex.POSITION],
boxes[:, BoundingBoxIndex.HEADING :],
)
dims_cam = boxes[
:, [BoundingBoxIndex.LENGTH, BoundingBoxIndex.HEIGHT, BoundingBoxIndex.WIDTH]
] # l, w, h -> l, h, w
rots_cam = np.zeros_like(rots)
for idx, rot in enumerate(rots):
rot = Quaternion(axis=[0, 0, 1], radians=rot)
rot = Quaternion(matrix=sensor2lidar_rotation).inverse * rot
rots_cam[idx] = -rot.yaw_pitch_roll[0]
lidar2cam_r = np.linalg.inv(sensor2lidar_rotation)
lidar2cam_t = sensor2lidar_translation @ lidar2cam_r.T
lidar2cam_rt = np.eye(4)
lidar2cam_rt[:3, :3] = lidar2cam_r.T
lidar2cam_rt[3, :3] = -lidar2cam_t
locs_cam = np.concatenate([locs, np.ones_like(locs)[:, :1]], -1) # -1, 4
locs_cam = lidar2cam_rt.T @ locs_cam.T
locs_cam = locs_cam.T
locs_cam = locs_cam[:, :-1]
return np.concatenate([locs_cam, dims_cam, rots_cam], -1)
def _rotation_3d_in_axis(points: npt.NDArray[np.float32], angles: npt.NDArray[np.float32], axis: int = 0):
"""
Rotate 3D points by angles according to axis.
TODO: Refactor
:param points: array of points
:param angles: array of angles
:param axis: axis to perform rotation, defaults to 0
:raises value: _description_
:raises ValueError: if axis invalid
:return: rotated points
"""
rot_sin = np.sin(angles)
rot_cos = np.cos(angles)
ones = np.ones_like(rot_cos)
zeros = np.zeros_like(rot_cos)
if axis == 1:
rot_mat_T = np.stack(
[
np.stack([rot_cos, zeros, -rot_sin]),
np.stack([zeros, ones, zeros]),
np.stack([rot_sin, zeros, rot_cos]),
]
)
elif axis == 2 or axis == -1:
rot_mat_T = np.stack(
[
np.stack([rot_cos, -rot_sin, zeros]),
np.stack([rot_sin, rot_cos, zeros]),
np.stack([zeros, zeros, ones]),
]
)
elif axis == 0:
rot_mat_T = np.stack(
[
np.stack([zeros, rot_cos, -rot_sin]),
np.stack([zeros, rot_sin, rot_cos]),
np.stack([ones, zeros, zeros]),
]
)
else:
raise ValueError(f"axis should in range [0, 1, 2], got {axis}")
return np.einsum("aij,jka->aik", points, rot_mat_T)
def _plot_rect_3d_on_img(
image: npt.NDArray[np.float32],
box_corners: npt.NDArray[np.float32],
box_labels: List[str],
thickness: int = 3,
) -> npt.NDArray[np.uint8]:
"""
Plot the boundary lines of 3D rectangular on 2D images.
TODO: refactor
:param image: The numpy array of image.
:param box_corners: Coordinates of the corners of 3D, shape of [N, 8, 2].
:param box_labels: labels of boxes for coloring
:param thickness: pixel width of liens, defaults to 3
:return: image with 3D bounding boxes
"""
line_indices = (
(0, 1),
(0, 3),
(0, 4),
(1, 2),
(1, 5),
(3, 2),
(3, 7),
(4, 5),
(4, 7),
(2, 6),
(5, 6),
(6, 7),
)
for i in range(len(box_corners)):
layer = tracked_object_types[box_labels[i]]
color = ImageColor.getcolor(AGENT_CONFIG[layer]["fill_color"], "RGB")
corners = box_corners[i].astype(np.int)
for start, end in line_indices:
cv2.line(
image,
(corners[start, 0], corners[start, 1]),
(corners[end, 0], corners[end, 1]),
color,
thickness,
cv2.LINE_AA,
)
return image.astype(np.uint8)
def _transform_points_to_image(
points: npt.NDArray[np.float32],
intrinsic: npt.NDArray[np.float32],
image_shape: Optional[Tuple[int, int]] = None,
eps: float = 1e-3,
) -> Tuple[npt.NDArray[np.float32], npt.NDArray[np.bool_]]:
"""
Transforms points in camera frame to image pixel coordinates
TODO: refactor
:param points: points in camera frame
:param intrinsic: camera intrinsics
:param image_shape: shape of image in pixel
:param eps: lower threshold of points, defaults to 1e-3
:return: points in pixel coordinates, mask of values in frame
"""
points = points[:, :3]
viewpad = np.eye(4)
viewpad[: intrinsic.shape[0], : intrinsic.shape[1]] = intrinsic
pc_img = np.concatenate([points, np.ones_like(points)[:, :1]], -1)
pc_img = viewpad @ pc_img.T
pc_img = pc_img.T
cur_pc_in_fov = pc_img[:, 2] > eps
pc_img = pc_img[..., 0:2] / np.maximum(pc_img[..., 2:3], np.ones_like(pc_img[..., 2:3]) * eps)
if image_shape is not None:
img_h, img_w = image_shape
cur_pc_in_fov = (
cur_pc_in_fov
& (pc_img[:, 0] < (img_w - 1))
& (pc_img[:, 0] > 0)
& (pc_img[:, 1] < (img_h - 1))
& (pc_img[:, 1] > 0)
)
return pc_img, cur_pc_in_fov
def _transform_pcs_to_images(
lidar_pc: npt.NDArray[np.float32],
sensor2lidar_rotation: npt.NDArray[np.float32],
sensor2lidar_translation: npt.NDArray[np.float32],
intrinsic: npt.NDArray[np.float32],
img_shape: Optional[Tuple[int, int]] = None,
eps: float = 1e-3,
) -> Tuple[npt.NDArray[np.float32], npt.NDArray[np.bool_]]:
"""
Transforms points in camera frame to image pixel coordinates
TODO: refactor
:param lidar_pc: lidar point cloud
:param sensor2lidar_rotation: camera rotation
:param sensor2lidar_translation: camera translation
:param intrinsic: camera intrinsics
:param img_shape: image shape in pixels, defaults to None
:param eps: threshold for lidar pc height, defaults to 1e-3
:return: lidar pc in pixel coordinates, mask of values in frame
"""
pc_xyz = lidar_pc[LidarIndex.POSITION, :].T
lidar2cam_r = np.linalg.inv(sensor2lidar_rotation)
lidar2cam_t = sensor2lidar_translation @ lidar2cam_r.T
lidar2cam_rt = np.eye(4)
lidar2cam_rt[:3, :3] = lidar2cam_r.T
lidar2cam_rt[3, :3] = -lidar2cam_t
viewpad = np.eye(4)
viewpad[: intrinsic.shape[0], : intrinsic.shape[1]] = intrinsic
lidar2img_rt = viewpad @ lidar2cam_rt.T
cur_pc_xyz = np.concatenate([pc_xyz, np.ones_like(pc_xyz)[:, :1]], -1)
cur_pc_cam = lidar2img_rt @ cur_pc_xyz.T
cur_pc_cam = cur_pc_cam.T
cur_pc_in_fov = cur_pc_cam[:, 2] > eps
cur_pc_cam = cur_pc_cam[..., 0:2] / np.maximum(cur_pc_cam[..., 2:3], np.ones_like(cur_pc_cam[..., 2:3]) * eps)
if img_shape is not None:
img_h, img_w = img_shape
cur_pc_in_fov = (
cur_pc_in_fov
& (cur_pc_cam[:, 0] < (img_w - 1))
& (cur_pc_cam[:, 0] > 0)
& (cur_pc_cam[:, 1] < (img_h - 1))
& (cur_pc_cam[:, 1] > 0)
)
return cur_pc_cam, cur_pc_in_fov
|