File size: 11,814 Bytes
83f398c e79e8bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
---
license: gpl-3.0
language:
- en
- zh
pipeline_tag: text-ranking
tags:
- transformers
- sentence-transformers
- binary code
- binary
- sentence-similarity
---
# BinSeek: Cross-modal Retrieval Models for Stripped Binary Analysis
BinSeek is the first two-stage cross-modal retrieval framework specifically designed for stripped binary code analysis. It bridges the semantic gap between natural language queries and binary code (decompiled pseudocode), enabling effective retrieval of relevant binary functions from large-scale codebases.
BinSeek addresses these challenges with a two-stage retrieval strategy:
- **BinSeek-Embedding**: An embedding model trained to learn the semantic relevance between binary code and natural language descriptions, used for efficient first-stage candidate retrieval.
- **BinSeek-Reranker**: A reranking model that carefully judges the relevance of candidate code to the description with calling context augmentation for more precise results.
<p align="center">
<img src="https://raw.githubusercontent.com/XingTuLab/BinSeek/main/assets/binseek.png" alt="Overview of BinSeek" width="95%">
</p>
## Model Information
| Model | Domain | Parameters | Embedding Dim | Max Tokens |
|:-------------------------------------------------------------------|:------:|:----------:|:-------------:|:----------:|
| [🤗 BinSeek-Embedding](https://huggingface.co/XingTuLab/BinSeek-Embedding) | Binary | 0.3B | 1024 | 4096 |
| [🤗 BinSeek-Reranker](https://huggingface.co/XingTuLab/BinSeek-Reranker) | Binary | 0.6B | / | 16384 |
BinSeek achieves advanced performance on binary code retrieval:
| Model | Model Size | Recall@1 | Recall@3 | MRR@3 |
|:-------------------------|:----------:|:--------:|:--------:|:------:|
| Qwen3-Embedding-8B | 8B | 57.50 | 65.00 | 60.75 |
| BinSeek-Embedding | 0.3B | 67.00 | 80.50 | 72.83 |
| Qwen3-Reranker-8B | 8B | 62.50 | 80.50 | 70.83 |
| BinSeek-Reranker | 0.6B | 61.50 | 83.00 | 70.50 |
| BinSeek (Emb+ Rerank) | / | 76.75 | 84.50 | 80.25 |
## Model Usage
### Dependencies
```bash
pip install torch sentence-transformers>=5.1.2 transformers>=4.57.1
```
Our models are compatible with the following frameworks. We recommend using the **two-stage pipeline** (Embedding + Reranker) for optimal retrieval performance.
### Sentence-Transformers
```python
import torch
from sentence_transformers import SentenceTransformer, CrossEncoder
# Query and Corpus
query = "A function that implements XTEA encryption algorithm"
# Binary pseudocode corpus (decompiled by IDA Pro)
corpus = [
'''char *__fastcall sub_100000924(__int64 a1, __int64 a2, unsigned int a3)
{
unsigned int i; // [xsp+1Ch] [xbp-34h]
char *v5; // [xsp+20h] [xbp-30h]
unsigned int v6; // [xsp+2Ch] [xbp-24h]
__int64 v9; // [xsp+40h] [xbp-10h] BYREF
v6 = a3;
v9 = 0;
if ( a3 % 8 )
v6 = a3 + 8 - a3 % 8;
v5 = (char *)malloc(v6);
__memset_chk(v5, 0, v6, -1);
for ( i = 0; i < v6; i += 8 )
{
v9 = *(_QWORD *)(a1 + (int)i);
sub_100000A68(32, (unsigned int *)&v9, a2);
__memcpy_chk(&v5[i], &v9, 8, -1);
}
return v5;
}''',
'''void *__fastcall sub_401000(size_t size){
void *ptr = malloc(size);
if (!ptr) { perror("malloc failed"); exit(1); }
return ptr;
}''',
'''int __fastcall sub_402000(char *s1, char *s2){
return strcmp(s1, s2);
}''',
# ... more functions in your corpus
]
# the context functions (concatenated into a single string) for each binary function in the corpus, selected from callees, see our paper for more details
corpus_context = [
'''__int64 __fastcall sub_100000A68(__int64 result, unsigned int *a2, __int64 a3)
{
unsigned int v3; // [xsp+8h] [xbp-28h]
unsigned int v4; // [xsp+Ch] [xbp-24h]
unsigned int v5; // [xsp+10h] [xbp-20h]
unsigned int i; // [xsp+14h] [xbp-1Ch]
v5 = *a2;
v4 = a2[1];
v3 = 0;
for ( i = 0; i < (unsigned int)result; ++i )
{
v5 += (((v4 >> 5) ^ (16 * v4)) + v4) ^ (v3 + *(_DWORD *)(a3 + 4LL * (v3 & 3)));
v3 -= 1640531527;
v4 += (((v5 >> 5) ^ (16 * v5)) + v5) ^ (v3 + *(_DWORD *)(a3 + 4LL * ((v3 >> 11) & 3)));
}
*a2 = v5;
a2[1] = v4;
return result;
}''',
"",
"",
# ... more context functions in your corpus
]
# Embedding-based Retrieval
embedding_model = SentenceTransformer(
"XingTuLab/BinSeek-Embedding",
model_kwargs={"dtype": torch.bfloat16},
trust_remote_code=True
)
query_embeddings = embedding_model.encode([query])
corpus_embeddings = embedding_model.encode(corpus, batch_size=64)
similarity_matrix = embedding_model.similarity(query_embeddings, corpus_embeddings)
scores = similarity_matrix[0].cpu().float().numpy()
top_k = 10 # Number of candidates to retrieve
top_k_indices = scores.argsort()[::-1][:top_k]
candidates = [corpus[i] for i in top_k_indices]
print("=== Stage 1: Embedding Retrieval Results ===")
for i, idx in enumerate(top_k_indices):
print(f"Rank {i+1}: Score={scores[idx]:.4f}, Corpus Index={idx}")
def build_candidates_with_context(candidates_ids):
candidates_with_context = []
for candidate_id in candidates_ids:
data = f"<pseudocode>\n{corpus[candidate_id]}\n</pseudocode>\n<context>\n{corpus_context[candidate_id]}\n</context>"
candidates_with_context.append(data)
return candidates_with_context
candidates_with_context = build_candidates_with_context(top_k_indices)
# Reranking for Precise Results
reranker = CrossEncoder(
"XingTuLab/BinSeek-Reranker",
model_kwargs={"dtype": torch.bfloat16},
trust_remote_code=True
)
reranked_results = reranker.rank(query, candidates_with_context)
print("\n=== Stage 2: Reranking Results ===")
print(f"Query: {query}")
for rank in reranked_results:
original_idx = top_k_indices[rank['corpus_id']]
print(f"Rank {reranked_results.index(rank)+1}: Score={rank['score']:.4f}, Corpus Index={original_idx}")
```
### Transformers
```python
import torch
import numpy as np
from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification
# Query and Corpus
query = "A function that implements XTEA encryption algorithm"
# Binary pseudocode corpus (decompiled by IDA Pro)
corpus = [
'''char *__fastcall sub_100000924(__int64 a1, __int64 a2, unsigned int a3)
{
unsigned int i; // [xsp+1Ch] [xbp-34h]
char *v5; // [xsp+20h] [xbp-30h]
unsigned int v6; // [xsp+2Ch] [xbp-24h]
__int64 v9; // [xsp+40h] [xbp-10h] BYREF
v6 = a3;
v9 = 0;
if ( a3 % 8 )
v6 = a3 + 8 - a3 % 8;
v5 = (char *)malloc(v6);
__memset_chk(v5, 0, v6, -1);
for ( i = 0; i < v6; i += 8 )
{
v9 = *(_QWORD *)(a1 + (int)i);
sub_100000A68(32, (unsigned int *)&v9, a2);
__memcpy_chk(&v5[i], &v9, 8, -1);
}
return v5;
}''',
'''void *__fastcall sub_401000(size_t size){
void *ptr = malloc(size);
if (!ptr) { perror("malloc failed"); exit(1); }
return ptr;
}''',
'''int __fastcall sub_402000(char *s1, char *s2){
return strcmp(s1, s2);
}''',
# ... more functions in your corpus
]
# the context functions (concatenated into a single string) for each binary function in the corpus, selected from callees, see our paper for more details
corpus_context = [
'''__int64 __fastcall sub_100000A68(__int64 result, unsigned int *a2, __int64 a3)
{
unsigned int v3; // [xsp+8h] [xbp-28h]
unsigned int v4; // [xsp+Ch] [xbp-24h]
unsigned int v5; // [xsp+10h] [xbp-20h]
unsigned int i; // [xsp+14h] [xbp-1Ch]
v5 = *a2;
v4 = a2[1];
v3 = 0;
for ( i = 0; i < (unsigned int)result; ++i )
{
v5 += (((v4 >> 5) ^ (16 * v4)) + v4) ^ (v3 + *(_DWORD *)(a3 + 4LL * (v3 & 3)));
v3 -= 1640531527;
v4 += (((v5 >> 5) ^ (16 * v5)) + v5) ^ (v3 + *(_DWORD *)(a3 + 4LL * ((v3 >> 11) & 3)));
}
*a2 = v5;
a2[1] = v4;
return result;
}''',
"",
"",
# ... more context functions in your corpus
]
# Embedding-based Retrieval
embed_tokenizer = AutoTokenizer.from_pretrained(
"XingTuLab/BinSeek-Embedding",
trust_remote_code=True
)
embed_model = AutoModel.from_pretrained(
"XingTuLab/BinSeek-Embedding",
dtype=torch.bfloat16,
trust_remote_code=True
).eval().cuda()
def get_embeddings(texts, tokenizer, model, max_length=4096):
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=max_length)
inputs = {k: v.cuda() for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
# Last token pooling: use attention_mask to find last valid token position
attention_mask = inputs["attention_mask"]
last_token_indices = attention_mask.sum(dim=1) - 1 # (batch_size,)
batch_indices = torch.arange(outputs.last_hidden_state.size(0), device=outputs.last_hidden_state.device)
embeddings = outputs.last_hidden_state[batch_indices, last_token_indices, :]
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
return embeddings.cpu().float().numpy()
query_embedding = get_embeddings([query], embed_tokenizer, embed_model)
corpus_embeddings = get_embeddings(corpus, embed_tokenizer, embed_model)
scores = np.dot(query_embedding, corpus_embeddings.T)[0]
top_k = 10
top_k_indices = np.argsort(scores)[::-1][:min(top_k, len(corpus))]
candidates = [corpus[i] for i in top_k_indices]
print("=== Stage 1: Embedding Retrieval Results ===")
for i, idx in enumerate(top_k_indices):
print(f"Rank {i+1}: Score={scores[idx]:.4f}, Corpus Index={idx}")
def build_candidates_with_context(candidates_ids):
candidates_with_context = []
for candidate_id in candidates_ids:
data = f"<pseudocode>\n{corpus[candidate_id]}\n</pseudocode>\n<context>\n{corpus_context[candidate_id]}\n</context>"
candidates_with_context.append(data)
return candidates_with_context
candidates_with_context = build_candidates_with_context(top_k_indices)
# Reranking for Precise Results
rerank_tokenizer = AutoTokenizer.from_pretrained(
"XingTuLab/BinSeek-Reranker",
trust_remote_code=True
)
rerank_model = AutoModelForSequenceClassification.from_pretrained(
"XingTuLab/BinSeek-Reranker",
dtype=torch.bfloat16,
trust_remote_code=True
).eval().cuda()
def rerank(query, candidates, tokenizer, model, max_length=16384):
pairs = [[query, cand] for cand in candidates]
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors="pt", max_length=max_length)
inputs = {k: v.cuda() for k, v in inputs.items()}
with torch.no_grad():
logits = model(**inputs).logits.squeeze(-1)
scores = torch.sigmoid(logits).float().cpu().numpy() # Apply sigmoid activation
return scores
rerank_scores = rerank(query, candidates_with_context, rerank_tokenizer, rerank_model)
reranked_order = np.argsort(rerank_scores)[::-1]
print("\n=== Stage 2: Reranking Results ===")
print(f"Query: {query}")
for i, idx in enumerate(reranked_order):
original_idx = top_k_indices[idx]
print(f"Rank {i+1}: Score={rerank_scores[idx]:.4f}, Corpus Index={original_idx}")
```
## License
This project is under the GPL-3.0 License, and it is for research purposes only. Please use responsibly and in accordance with applicable laws and regulations.
## Citation
If you find our work helpful, feel free to give us a cite.
```bibtex
@misc{chen2025BinSeek,
title={Cross-modal Retrieval Models for Stripped Binary Analysis},
author={Guoqiang Chen and Lingyun Ying and Ziyang Song and Daguang Liu and Qiang Wang and Zhiqi Wang and Li Hu and Shaoyin Cheng and Weiming Zhang and Nenghai Yu},
year={2025},
eprint={2512.10393},
archivePrefix={arXiv},
primaryClass={cs.SE},
url={https://arxiv.org/abs/2512.10393},
}
```
|