Yuan-lab commited on
Commit
ed8a2e0
·
verified ·
1 Parent(s): 66e17e3

Upload 20 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,1049 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</3dbox>": 134971,
3
+ "</IMAGE>": 134962,
4
+ "</box>": 134967,
5
+ "</code_query>": 135987,
6
+ "</code_result>": 135989,
7
+ "</depth>": 134973,
8
+ "</final_answer>": 135999,
9
+ "</infer>": 135991,
10
+ "</inferresult>": 135993,
11
+ "</obj>": 134965,
12
+ "</point>": 134969,
13
+ "</search_query>": 135985,
14
+ "</search_result>": 135983,
15
+ "</think>": 135981,
16
+ "</tool_calls>": 135995,
17
+ "</tool_response>": 135997,
18
+ "<3dbox>": 134970,
19
+ "<BOS>": 134960,
20
+ "<FIM_MIDDLE>": 134957,
21
+ "<FIM_PREFIX>": 134956,
22
+ "<FIM_SUFFIX>": 134955,
23
+ "<IMAGE>": 134961,
24
+ "<box>": 134966,
25
+ "<code_query>": 135986,
26
+ "<code_result>": 135988,
27
+ "<depth>": 134972,
28
+ "<eog>": 135975,
29
+ "<eop>": 135974,
30
+ "<file_sep>": 134959,
31
+ "<final_answer>": 135998,
32
+ "<grounding>": 134963,
33
+ "<infer>": 135990,
34
+ "<inferresult>": 135992,
35
+ "<mask>": 134953,
36
+ "<obj>": 134964,
37
+ "<point>": 134968,
38
+ "<predict>": 134954,
39
+ "<repo_name>": 134958,
40
+ "<search_query>": 135984,
41
+ "<search_result>": 135982,
42
+ "<think>": 135980,
43
+ "<tool_calls>": 135994,
44
+ "<tool_response>": 135996,
45
+ "<|Assistant|>": 135979,
46
+ "<|User|>": 135978,
47
+ "<|begin_of_sentence|>": 135976,
48
+ "<|end_of_sentence|>": 135977,
49
+ "s000": 134974,
50
+ "s001": 134975,
51
+ "s002": 134976,
52
+ "s003": 134977,
53
+ "s004": 134978,
54
+ "s005": 134979,
55
+ "s006": 134980,
56
+ "s007": 134981,
57
+ "s008": 134982,
58
+ "s009": 134983,
59
+ "s010": 134984,
60
+ "s011": 134985,
61
+ "s012": 134986,
62
+ "s013": 134987,
63
+ "s014": 134988,
64
+ "s015": 134989,
65
+ "s016": 134990,
66
+ "s017": 134991,
67
+ "s018": 134992,
68
+ "s019": 134993,
69
+ "s020": 134994,
70
+ "s021": 134995,
71
+ "s022": 134996,
72
+ "s023": 134997,
73
+ "s024": 134998,
74
+ "s025": 134999,
75
+ "s026": 135000,
76
+ "s027": 135001,
77
+ "s028": 135002,
78
+ "s029": 135003,
79
+ "s030": 135004,
80
+ "s031": 135005,
81
+ "s032": 135006,
82
+ "s033": 135007,
83
+ "s034": 135008,
84
+ "s035": 135009,
85
+ "s036": 135010,
86
+ "s037": 135011,
87
+ "s038": 135012,
88
+ "s039": 135013,
89
+ "s040": 135014,
90
+ "s041": 135015,
91
+ "s042": 135016,
92
+ "s043": 135017,
93
+ "s044": 135018,
94
+ "s045": 135019,
95
+ "s046": 135020,
96
+ "s047": 135021,
97
+ "s048": 135022,
98
+ "s049": 135023,
99
+ "s050": 135024,
100
+ "s051": 135025,
101
+ "s052": 135026,
102
+ "s053": 135027,
103
+ "s054": 135028,
104
+ "s055": 135029,
105
+ "s056": 135030,
106
+ "s057": 135031,
107
+ "s058": 135032,
108
+ "s059": 135033,
109
+ "s060": 135034,
110
+ "s061": 135035,
111
+ "s062": 135036,
112
+ "s063": 135037,
113
+ "s064": 135038,
114
+ "s065": 135039,
115
+ "s066": 135040,
116
+ "s067": 135041,
117
+ "s068": 135042,
118
+ "s069": 135043,
119
+ "s070": 135044,
120
+ "s071": 135045,
121
+ "s072": 135046,
122
+ "s073": 135047,
123
+ "s074": 135048,
124
+ "s075": 135049,
125
+ "s076": 135050,
126
+ "s077": 135051,
127
+ "s078": 135052,
128
+ "s079": 135053,
129
+ "s080": 135054,
130
+ "s081": 135055,
131
+ "s082": 135056,
132
+ "s083": 135057,
133
+ "s084": 135058,
134
+ "s085": 135059,
135
+ "s086": 135060,
136
+ "s087": 135061,
137
+ "s088": 135062,
138
+ "s089": 135063,
139
+ "s090": 135064,
140
+ "s091": 135065,
141
+ "s092": 135066,
142
+ "s093": 135067,
143
+ "s094": 135068,
144
+ "s095": 135069,
145
+ "s096": 135070,
146
+ "s097": 135071,
147
+ "s098": 135072,
148
+ "s099": 135073,
149
+ "s100": 135074,
150
+ "s101": 135075,
151
+ "s102": 135076,
152
+ "s103": 135077,
153
+ "s104": 135078,
154
+ "s105": 135079,
155
+ "s106": 135080,
156
+ "s107": 135081,
157
+ "s108": 135082,
158
+ "s109": 135083,
159
+ "s110": 135084,
160
+ "s111": 135085,
161
+ "s112": 135086,
162
+ "s113": 135087,
163
+ "s114": 135088,
164
+ "s115": 135089,
165
+ "s116": 135090,
166
+ "s117": 135091,
167
+ "s118": 135092,
168
+ "s119": 135093,
169
+ "s120": 135094,
170
+ "s121": 135095,
171
+ "s122": 135096,
172
+ "s123": 135097,
173
+ "s124": 135098,
174
+ "s125": 135099,
175
+ "s126": 135100,
176
+ "s127": 135101,
177
+ "s128": 135102,
178
+ "s129": 135103,
179
+ "s130": 135104,
180
+ "s131": 135105,
181
+ "s132": 135106,
182
+ "s133": 135107,
183
+ "s134": 135108,
184
+ "s135": 135109,
185
+ "s136": 135110,
186
+ "s137": 135111,
187
+ "s138": 135112,
188
+ "s139": 135113,
189
+ "s140": 135114,
190
+ "s141": 135115,
191
+ "s142": 135116,
192
+ "s143": 135117,
193
+ "s144": 135118,
194
+ "s145": 135119,
195
+ "s146": 135120,
196
+ "s147": 135121,
197
+ "s148": 135122,
198
+ "s149": 135123,
199
+ "s150": 135124,
200
+ "s151": 135125,
201
+ "s152": 135126,
202
+ "s153": 135127,
203
+ "s154": 135128,
204
+ "s155": 135129,
205
+ "s156": 135130,
206
+ "s157": 135131,
207
+ "s158": 135132,
208
+ "s159": 135133,
209
+ "s160": 135134,
210
+ "s161": 135135,
211
+ "s162": 135136,
212
+ "s163": 135137,
213
+ "s164": 135138,
214
+ "s165": 135139,
215
+ "s166": 135140,
216
+ "s167": 135141,
217
+ "s168": 135142,
218
+ "s169": 135143,
219
+ "s170": 135144,
220
+ "s171": 135145,
221
+ "s172": 135146,
222
+ "s173": 135147,
223
+ "s174": 135148,
224
+ "s175": 135149,
225
+ "s176": 135150,
226
+ "s177": 135151,
227
+ "s178": 135152,
228
+ "s179": 135153,
229
+ "s180": 135154,
230
+ "s181": 135155,
231
+ "s182": 135156,
232
+ "s183": 135157,
233
+ "s184": 135158,
234
+ "s185": 135159,
235
+ "s186": 135160,
236
+ "s187": 135161,
237
+ "s188": 135162,
238
+ "s189": 135163,
239
+ "s190": 135164,
240
+ "s191": 135165,
241
+ "s192": 135166,
242
+ "s193": 135167,
243
+ "s194": 135168,
244
+ "s195": 135169,
245
+ "s196": 135170,
246
+ "s197": 135171,
247
+ "s198": 135172,
248
+ "s199": 135173,
249
+ "s200": 135174,
250
+ "s201": 135175,
251
+ "s202": 135176,
252
+ "s203": 135177,
253
+ "s204": 135178,
254
+ "s205": 135179,
255
+ "s206": 135180,
256
+ "s207": 135181,
257
+ "s208": 135182,
258
+ "s209": 135183,
259
+ "s210": 135184,
260
+ "s211": 135185,
261
+ "s212": 135186,
262
+ "s213": 135187,
263
+ "s214": 135188,
264
+ "s215": 135189,
265
+ "s216": 135190,
266
+ "s217": 135191,
267
+ "s218": 135192,
268
+ "s219": 135193,
269
+ "s220": 135194,
270
+ "s221": 135195,
271
+ "s222": 135196,
272
+ "s223": 135197,
273
+ "s224": 135198,
274
+ "s225": 135199,
275
+ "s226": 135200,
276
+ "s227": 135201,
277
+ "s228": 135202,
278
+ "s229": 135203,
279
+ "s230": 135204,
280
+ "s231": 135205,
281
+ "s232": 135206,
282
+ "s233": 135207,
283
+ "s234": 135208,
284
+ "s235": 135209,
285
+ "s236": 135210,
286
+ "s237": 135211,
287
+ "s238": 135212,
288
+ "s239": 135213,
289
+ "s240": 135214,
290
+ "s241": 135215,
291
+ "s242": 135216,
292
+ "s243": 135217,
293
+ "s244": 135218,
294
+ "s245": 135219,
295
+ "s246": 135220,
296
+ "s247": 135221,
297
+ "s248": 135222,
298
+ "s249": 135223,
299
+ "s250": 135224,
300
+ "s251": 135225,
301
+ "s252": 135226,
302
+ "s253": 135227,
303
+ "s254": 135228,
304
+ "s255": 135229,
305
+ "s256": 135230,
306
+ "s257": 135231,
307
+ "s258": 135232,
308
+ "s259": 135233,
309
+ "s260": 135234,
310
+ "s261": 135235,
311
+ "s262": 135236,
312
+ "s263": 135237,
313
+ "s264": 135238,
314
+ "s265": 135239,
315
+ "s266": 135240,
316
+ "s267": 135241,
317
+ "s268": 135242,
318
+ "s269": 135243,
319
+ "s270": 135244,
320
+ "s271": 135245,
321
+ "s272": 135246,
322
+ "s273": 135247,
323
+ "s274": 135248,
324
+ "s275": 135249,
325
+ "s276": 135250,
326
+ "s277": 135251,
327
+ "s278": 135252,
328
+ "s279": 135253,
329
+ "s280": 135254,
330
+ "s281": 135255,
331
+ "s282": 135256,
332
+ "s283": 135257,
333
+ "s284": 135258,
334
+ "s285": 135259,
335
+ "s286": 135260,
336
+ "s287": 135261,
337
+ "s288": 135262,
338
+ "s289": 135263,
339
+ "s290": 135264,
340
+ "s291": 135265,
341
+ "s292": 135266,
342
+ "s293": 135267,
343
+ "s294": 135268,
344
+ "s295": 135269,
345
+ "s296": 135270,
346
+ "s297": 135271,
347
+ "s298": 135272,
348
+ "s299": 135273,
349
+ "s300": 135274,
350
+ "s301": 135275,
351
+ "s302": 135276,
352
+ "s303": 135277,
353
+ "s304": 135278,
354
+ "s305": 135279,
355
+ "s306": 135280,
356
+ "s307": 135281,
357
+ "s308": 135282,
358
+ "s309": 135283,
359
+ "s310": 135284,
360
+ "s311": 135285,
361
+ "s312": 135286,
362
+ "s313": 135287,
363
+ "s314": 135288,
364
+ "s315": 135289,
365
+ "s316": 135290,
366
+ "s317": 135291,
367
+ "s318": 135292,
368
+ "s319": 135293,
369
+ "s320": 135294,
370
+ "s321": 135295,
371
+ "s322": 135296,
372
+ "s323": 135297,
373
+ "s324": 135298,
374
+ "s325": 135299,
375
+ "s326": 135300,
376
+ "s327": 135301,
377
+ "s328": 135302,
378
+ "s329": 135303,
379
+ "s330": 135304,
380
+ "s331": 135305,
381
+ "s332": 135306,
382
+ "s333": 135307,
383
+ "s334": 135308,
384
+ "s335": 135309,
385
+ "s336": 135310,
386
+ "s337": 135311,
387
+ "s338": 135312,
388
+ "s339": 135313,
389
+ "s340": 135314,
390
+ "s341": 135315,
391
+ "s342": 135316,
392
+ "s343": 135317,
393
+ "s344": 135318,
394
+ "s345": 135319,
395
+ "s346": 135320,
396
+ "s347": 135321,
397
+ "s348": 135322,
398
+ "s349": 135323,
399
+ "s350": 135324,
400
+ "s351": 135325,
401
+ "s352": 135326,
402
+ "s353": 135327,
403
+ "s354": 135328,
404
+ "s355": 135329,
405
+ "s356": 135330,
406
+ "s357": 135331,
407
+ "s358": 135332,
408
+ "s359": 135333,
409
+ "s360": 135334,
410
+ "s361": 135335,
411
+ "s362": 135336,
412
+ "s363": 135337,
413
+ "s364": 135338,
414
+ "s365": 135339,
415
+ "s366": 135340,
416
+ "s367": 135341,
417
+ "s368": 135342,
418
+ "s369": 135343,
419
+ "s370": 135344,
420
+ "s371": 135345,
421
+ "s372": 135346,
422
+ "s373": 135347,
423
+ "s374": 135348,
424
+ "s375": 135349,
425
+ "s376": 135350,
426
+ "s377": 135351,
427
+ "s378": 135352,
428
+ "s379": 135353,
429
+ "s380": 135354,
430
+ "s381": 135355,
431
+ "s382": 135356,
432
+ "s383": 135357,
433
+ "s384": 135358,
434
+ "s385": 135359,
435
+ "s386": 135360,
436
+ "s387": 135361,
437
+ "s388": 135362,
438
+ "s389": 135363,
439
+ "s390": 135364,
440
+ "s391": 135365,
441
+ "s392": 135366,
442
+ "s393": 135367,
443
+ "s394": 135368,
444
+ "s395": 135369,
445
+ "s396": 135370,
446
+ "s397": 135371,
447
+ "s398": 135372,
448
+ "s399": 135373,
449
+ "s400": 135374,
450
+ "s401": 135375,
451
+ "s402": 135376,
452
+ "s403": 135377,
453
+ "s404": 135378,
454
+ "s405": 135379,
455
+ "s406": 135380,
456
+ "s407": 135381,
457
+ "s408": 135382,
458
+ "s409": 135383,
459
+ "s410": 135384,
460
+ "s411": 135385,
461
+ "s412": 135386,
462
+ "s413": 135387,
463
+ "s414": 135388,
464
+ "s415": 135389,
465
+ "s416": 135390,
466
+ "s417": 135391,
467
+ "s418": 135392,
468
+ "s419": 135393,
469
+ "s420": 135394,
470
+ "s421": 135395,
471
+ "s422": 135396,
472
+ "s423": 135397,
473
+ "s424": 135398,
474
+ "s425": 135399,
475
+ "s426": 135400,
476
+ "s427": 135401,
477
+ "s428": 135402,
478
+ "s429": 135403,
479
+ "s430": 135404,
480
+ "s431": 135405,
481
+ "s432": 135406,
482
+ "s433": 135407,
483
+ "s434": 135408,
484
+ "s435": 135409,
485
+ "s436": 135410,
486
+ "s437": 135411,
487
+ "s438": 135412,
488
+ "s439": 135413,
489
+ "s440": 135414,
490
+ "s441": 135415,
491
+ "s442": 135416,
492
+ "s443": 135417,
493
+ "s444": 135418,
494
+ "s445": 135419,
495
+ "s446": 135420,
496
+ "s447": 135421,
497
+ "s448": 135422,
498
+ "s449": 135423,
499
+ "s450": 135424,
500
+ "s451": 135425,
501
+ "s452": 135426,
502
+ "s453": 135427,
503
+ "s454": 135428,
504
+ "s455": 135429,
505
+ "s456": 135430,
506
+ "s457": 135431,
507
+ "s458": 135432,
508
+ "s459": 135433,
509
+ "s460": 135434,
510
+ "s461": 135435,
511
+ "s462": 135436,
512
+ "s463": 135437,
513
+ "s464": 135438,
514
+ "s465": 135439,
515
+ "s466": 135440,
516
+ "s467": 135441,
517
+ "s468": 135442,
518
+ "s469": 135443,
519
+ "s470": 135444,
520
+ "s471": 135445,
521
+ "s472": 135446,
522
+ "s473": 135447,
523
+ "s474": 135448,
524
+ "s475": 135449,
525
+ "s476": 135450,
526
+ "s477": 135451,
527
+ "s478": 135452,
528
+ "s479": 135453,
529
+ "s480": 135454,
530
+ "s481": 135455,
531
+ "s482": 135456,
532
+ "s483": 135457,
533
+ "s484": 135458,
534
+ "s485": 135459,
535
+ "s486": 135460,
536
+ "s487": 135461,
537
+ "s488": 135462,
538
+ "s489": 135463,
539
+ "s490": 135464,
540
+ "s491": 135465,
541
+ "s492": 135466,
542
+ "s493": 135467,
543
+ "s494": 135468,
544
+ "s495": 135469,
545
+ "s496": 135470,
546
+ "s497": 135471,
547
+ "s498": 135472,
548
+ "s499": 135473,
549
+ "s500": 135474,
550
+ "s501": 135475,
551
+ "s502": 135476,
552
+ "s503": 135477,
553
+ "s504": 135478,
554
+ "s505": 135479,
555
+ "s506": 135480,
556
+ "s507": 135481,
557
+ "s508": 135482,
558
+ "s509": 135483,
559
+ "s510": 135484,
560
+ "s511": 135485,
561
+ "s512": 135486,
562
+ "s513": 135487,
563
+ "s514": 135488,
564
+ "s515": 135489,
565
+ "s516": 135490,
566
+ "s517": 135491,
567
+ "s518": 135492,
568
+ "s519": 135493,
569
+ "s520": 135494,
570
+ "s521": 135495,
571
+ "s522": 135496,
572
+ "s523": 135497,
573
+ "s524": 135498,
574
+ "s525": 135499,
575
+ "s526": 135500,
576
+ "s527": 135501,
577
+ "s528": 135502,
578
+ "s529": 135503,
579
+ "s530": 135504,
580
+ "s531": 135505,
581
+ "s532": 135506,
582
+ "s533": 135507,
583
+ "s534": 135508,
584
+ "s535": 135509,
585
+ "s536": 135510,
586
+ "s537": 135511,
587
+ "s538": 135512,
588
+ "s539": 135513,
589
+ "s540": 135514,
590
+ "s541": 135515,
591
+ "s542": 135516,
592
+ "s543": 135517,
593
+ "s544": 135518,
594
+ "s545": 135519,
595
+ "s546": 135520,
596
+ "s547": 135521,
597
+ "s548": 135522,
598
+ "s549": 135523,
599
+ "s550": 135524,
600
+ "s551": 135525,
601
+ "s552": 135526,
602
+ "s553": 135527,
603
+ "s554": 135528,
604
+ "s555": 135529,
605
+ "s556": 135530,
606
+ "s557": 135531,
607
+ "s558": 135532,
608
+ "s559": 135533,
609
+ "s560": 135534,
610
+ "s561": 135535,
611
+ "s562": 135536,
612
+ "s563": 135537,
613
+ "s564": 135538,
614
+ "s565": 135539,
615
+ "s566": 135540,
616
+ "s567": 135541,
617
+ "s568": 135542,
618
+ "s569": 135543,
619
+ "s570": 135544,
620
+ "s571": 135545,
621
+ "s572": 135546,
622
+ "s573": 135547,
623
+ "s574": 135548,
624
+ "s575": 135549,
625
+ "s576": 135550,
626
+ "s577": 135551,
627
+ "s578": 135552,
628
+ "s579": 135553,
629
+ "s580": 135554,
630
+ "s581": 135555,
631
+ "s582": 135556,
632
+ "s583": 135557,
633
+ "s584": 135558,
634
+ "s585": 135559,
635
+ "s586": 135560,
636
+ "s587": 135561,
637
+ "s588": 135562,
638
+ "s589": 135563,
639
+ "s590": 135564,
640
+ "s591": 135565,
641
+ "s592": 135566,
642
+ "s593": 135567,
643
+ "s594": 135568,
644
+ "s595": 135569,
645
+ "s596": 135570,
646
+ "s597": 135571,
647
+ "s598": 135572,
648
+ "s599": 135573,
649
+ "s600": 135574,
650
+ "s601": 135575,
651
+ "s602": 135576,
652
+ "s603": 135577,
653
+ "s604": 135578,
654
+ "s605": 135579,
655
+ "s606": 135580,
656
+ "s607": 135581,
657
+ "s608": 135582,
658
+ "s609": 135583,
659
+ "s610": 135584,
660
+ "s611": 135585,
661
+ "s612": 135586,
662
+ "s613": 135587,
663
+ "s614": 135588,
664
+ "s615": 135589,
665
+ "s616": 135590,
666
+ "s617": 135591,
667
+ "s618": 135592,
668
+ "s619": 135593,
669
+ "s620": 135594,
670
+ "s621": 135595,
671
+ "s622": 135596,
672
+ "s623": 135597,
673
+ "s624": 135598,
674
+ "s625": 135599,
675
+ "s626": 135600,
676
+ "s627": 135601,
677
+ "s628": 135602,
678
+ "s629": 135603,
679
+ "s630": 135604,
680
+ "s631": 135605,
681
+ "s632": 135606,
682
+ "s633": 135607,
683
+ "s634": 135608,
684
+ "s635": 135609,
685
+ "s636": 135610,
686
+ "s637": 135611,
687
+ "s638": 135612,
688
+ "s639": 135613,
689
+ "s640": 135614,
690
+ "s641": 135615,
691
+ "s642": 135616,
692
+ "s643": 135617,
693
+ "s644": 135618,
694
+ "s645": 135619,
695
+ "s646": 135620,
696
+ "s647": 135621,
697
+ "s648": 135622,
698
+ "s649": 135623,
699
+ "s650": 135624,
700
+ "s651": 135625,
701
+ "s652": 135626,
702
+ "s653": 135627,
703
+ "s654": 135628,
704
+ "s655": 135629,
705
+ "s656": 135630,
706
+ "s657": 135631,
707
+ "s658": 135632,
708
+ "s659": 135633,
709
+ "s660": 135634,
710
+ "s661": 135635,
711
+ "s662": 135636,
712
+ "s663": 135637,
713
+ "s664": 135638,
714
+ "s665": 135639,
715
+ "s666": 135640,
716
+ "s667": 135641,
717
+ "s668": 135642,
718
+ "s669": 135643,
719
+ "s670": 135644,
720
+ "s671": 135645,
721
+ "s672": 135646,
722
+ "s673": 135647,
723
+ "s674": 135648,
724
+ "s675": 135649,
725
+ "s676": 135650,
726
+ "s677": 135651,
727
+ "s678": 135652,
728
+ "s679": 135653,
729
+ "s680": 135654,
730
+ "s681": 135655,
731
+ "s682": 135656,
732
+ "s683": 135657,
733
+ "s684": 135658,
734
+ "s685": 135659,
735
+ "s686": 135660,
736
+ "s687": 135661,
737
+ "s688": 135662,
738
+ "s689": 135663,
739
+ "s690": 135664,
740
+ "s691": 135665,
741
+ "s692": 135666,
742
+ "s693": 135667,
743
+ "s694": 135668,
744
+ "s695": 135669,
745
+ "s696": 135670,
746
+ "s697": 135671,
747
+ "s698": 135672,
748
+ "s699": 135673,
749
+ "s700": 135674,
750
+ "s701": 135675,
751
+ "s702": 135676,
752
+ "s703": 135677,
753
+ "s704": 135678,
754
+ "s705": 135679,
755
+ "s706": 135680,
756
+ "s707": 135681,
757
+ "s708": 135682,
758
+ "s709": 135683,
759
+ "s710": 135684,
760
+ "s711": 135685,
761
+ "s712": 135686,
762
+ "s713": 135687,
763
+ "s714": 135688,
764
+ "s715": 135689,
765
+ "s716": 135690,
766
+ "s717": 135691,
767
+ "s718": 135692,
768
+ "s719": 135693,
769
+ "s720": 135694,
770
+ "s721": 135695,
771
+ "s722": 135696,
772
+ "s723": 135697,
773
+ "s724": 135698,
774
+ "s725": 135699,
775
+ "s726": 135700,
776
+ "s727": 135701,
777
+ "s728": 135702,
778
+ "s729": 135703,
779
+ "s730": 135704,
780
+ "s731": 135705,
781
+ "s732": 135706,
782
+ "s733": 135707,
783
+ "s734": 135708,
784
+ "s735": 135709,
785
+ "s736": 135710,
786
+ "s737": 135711,
787
+ "s738": 135712,
788
+ "s739": 135713,
789
+ "s740": 135714,
790
+ "s741": 135715,
791
+ "s742": 135716,
792
+ "s743": 135717,
793
+ "s744": 135718,
794
+ "s745": 135719,
795
+ "s746": 135720,
796
+ "s747": 135721,
797
+ "s748": 135722,
798
+ "s749": 135723,
799
+ "s750": 135724,
800
+ "s751": 135725,
801
+ "s752": 135726,
802
+ "s753": 135727,
803
+ "s754": 135728,
804
+ "s755": 135729,
805
+ "s756": 135730,
806
+ "s757": 135731,
807
+ "s758": 135732,
808
+ "s759": 135733,
809
+ "s760": 135734,
810
+ "s761": 135735,
811
+ "s762": 135736,
812
+ "s763": 135737,
813
+ "s764": 135738,
814
+ "s765": 135739,
815
+ "s766": 135740,
816
+ "s767": 135741,
817
+ "s768": 135742,
818
+ "s769": 135743,
819
+ "s770": 135744,
820
+ "s771": 135745,
821
+ "s772": 135746,
822
+ "s773": 135747,
823
+ "s774": 135748,
824
+ "s775": 135749,
825
+ "s776": 135750,
826
+ "s777": 135751,
827
+ "s778": 135752,
828
+ "s779": 135753,
829
+ "s780": 135754,
830
+ "s781": 135755,
831
+ "s782": 135756,
832
+ "s783": 135757,
833
+ "s784": 135758,
834
+ "s785": 135759,
835
+ "s786": 135760,
836
+ "s787": 135761,
837
+ "s788": 135762,
838
+ "s789": 135763,
839
+ "s790": 135764,
840
+ "s791": 135765,
841
+ "s792": 135766,
842
+ "s793": 135767,
843
+ "s794": 135768,
844
+ "s795": 135769,
845
+ "s796": 135770,
846
+ "s797": 135771,
847
+ "s798": 135772,
848
+ "s799": 135773,
849
+ "s800": 135774,
850
+ "s801": 135775,
851
+ "s802": 135776,
852
+ "s803": 135777,
853
+ "s804": 135778,
854
+ "s805": 135779,
855
+ "s806": 135780,
856
+ "s807": 135781,
857
+ "s808": 135782,
858
+ "s809": 135783,
859
+ "s810": 135784,
860
+ "s811": 135785,
861
+ "s812": 135786,
862
+ "s813": 135787,
863
+ "s814": 135788,
864
+ "s815": 135789,
865
+ "s816": 135790,
866
+ "s817": 135791,
867
+ "s818": 135792,
868
+ "s819": 135793,
869
+ "s820": 135794,
870
+ "s821": 135795,
871
+ "s822": 135796,
872
+ "s823": 135797,
873
+ "s824": 135798,
874
+ "s825": 135799,
875
+ "s826": 135800,
876
+ "s827": 135801,
877
+ "s828": 135802,
878
+ "s829": 135803,
879
+ "s830": 135804,
880
+ "s831": 135805,
881
+ "s832": 135806,
882
+ "s833": 135807,
883
+ "s834": 135808,
884
+ "s835": 135809,
885
+ "s836": 135810,
886
+ "s837": 135811,
887
+ "s838": 135812,
888
+ "s839": 135813,
889
+ "s840": 135814,
890
+ "s841": 135815,
891
+ "s842": 135816,
892
+ "s843": 135817,
893
+ "s844": 135818,
894
+ "s845": 135819,
895
+ "s846": 135820,
896
+ "s847": 135821,
897
+ "s848": 135822,
898
+ "s849": 135823,
899
+ "s850": 135824,
900
+ "s851": 135825,
901
+ "s852": 135826,
902
+ "s853": 135827,
903
+ "s854": 135828,
904
+ "s855": 135829,
905
+ "s856": 135830,
906
+ "s857": 135831,
907
+ "s858": 135832,
908
+ "s859": 135833,
909
+ "s860": 135834,
910
+ "s861": 135835,
911
+ "s862": 135836,
912
+ "s863": 135837,
913
+ "s864": 135838,
914
+ "s865": 135839,
915
+ "s866": 135840,
916
+ "s867": 135841,
917
+ "s868": 135842,
918
+ "s869": 135843,
919
+ "s870": 135844,
920
+ "s871": 135845,
921
+ "s872": 135846,
922
+ "s873": 135847,
923
+ "s874": 135848,
924
+ "s875": 135849,
925
+ "s876": 135850,
926
+ "s877": 135851,
927
+ "s878": 135852,
928
+ "s879": 135853,
929
+ "s880": 135854,
930
+ "s881": 135855,
931
+ "s882": 135856,
932
+ "s883": 135857,
933
+ "s884": 135858,
934
+ "s885": 135859,
935
+ "s886": 135860,
936
+ "s887": 135861,
937
+ "s888": 135862,
938
+ "s889": 135863,
939
+ "s890": 135864,
940
+ "s891": 135865,
941
+ "s892": 135866,
942
+ "s893": 135867,
943
+ "s894": 135868,
944
+ "s895": 135869,
945
+ "s896": 135870,
946
+ "s897": 135871,
947
+ "s898": 135872,
948
+ "s899": 135873,
949
+ "s900": 135874,
950
+ "s901": 135875,
951
+ "s902": 135876,
952
+ "s903": 135877,
953
+ "s904": 135878,
954
+ "s905": 135879,
955
+ "s906": 135880,
956
+ "s907": 135881,
957
+ "s908": 135882,
958
+ "s909": 135883,
959
+ "s910": 135884,
960
+ "s911": 135885,
961
+ "s912": 135886,
962
+ "s913": 135887,
963
+ "s914": 135888,
964
+ "s915": 135889,
965
+ "s916": 135890,
966
+ "s917": 135891,
967
+ "s918": 135892,
968
+ "s919": 135893,
969
+ "s920": 135894,
970
+ "s921": 135895,
971
+ "s922": 135896,
972
+ "s923": 135897,
973
+ "s924": 135898,
974
+ "s925": 135899,
975
+ "s926": 135900,
976
+ "s927": 135901,
977
+ "s928": 135902,
978
+ "s929": 135903,
979
+ "s930": 135904,
980
+ "s931": 135905,
981
+ "s932": 135906,
982
+ "s933": 135907,
983
+ "s934": 135908,
984
+ "s935": 135909,
985
+ "s936": 135910,
986
+ "s937": 135911,
987
+ "s938": 135912,
988
+ "s939": 135913,
989
+ "s940": 135914,
990
+ "s941": 135915,
991
+ "s942": 135916,
992
+ "s943": 135917,
993
+ "s944": 135918,
994
+ "s945": 135919,
995
+ "s946": 135920,
996
+ "s947": 135921,
997
+ "s948": 135922,
998
+ "s949": 135923,
999
+ "s950": 135924,
1000
+ "s951": 135925,
1001
+ "s952": 135926,
1002
+ "s953": 135927,
1003
+ "s954": 135928,
1004
+ "s955": 135929,
1005
+ "s956": 135930,
1006
+ "s957": 135931,
1007
+ "s958": 135932,
1008
+ "s959": 135933,
1009
+ "s960": 135934,
1010
+ "s961": 135935,
1011
+ "s962": 135936,
1012
+ "s963": 135937,
1013
+ "s964": 135938,
1014
+ "s965": 135939,
1015
+ "s966": 135940,
1016
+ "s967": 135941,
1017
+ "s968": 135942,
1018
+ "s969": 135943,
1019
+ "s970": 135944,
1020
+ "s971": 135945,
1021
+ "s972": 135946,
1022
+ "s973": 135947,
1023
+ "s974": 135948,
1024
+ "s975": 135949,
1025
+ "s976": 135950,
1026
+ "s977": 135951,
1027
+ "s978": 135952,
1028
+ "s979": 135953,
1029
+ "s980": 135954,
1030
+ "s981": 135955,
1031
+ "s982": 135956,
1032
+ "s983": 135957,
1033
+ "s984": 135958,
1034
+ "s985": 135959,
1035
+ "s986": 135960,
1036
+ "s987": 135961,
1037
+ "s988": 135962,
1038
+ "s989": 135963,
1039
+ "s990": 135964,
1040
+ "s991": 135965,
1041
+ "s992": 135966,
1042
+ "s993": 135967,
1043
+ "s994": 135968,
1044
+ "s995": 135969,
1045
+ "s996": 135970,
1046
+ "s997": 135971,
1047
+ "s998": 135972,
1048
+ "s999": 135973
1049
+ }
chat_template.jinja ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {% for message in messages if message.role == 'user' and message.content is iterable and message.content is not string %}
2
+ {% for item in message.content if item.type == 'image' %}
3
+ {{- '<image>' -}}
4
+ {% endfor %}
5
+ {% endfor %}
6
+
7
+ {{- '<|begin_of_sentence|>' -}}
8
+
9
+ {%- set system_message = namespace(value=none) -%}
10
+ {%- for message in messages if message.role == 'system' -%}
11
+ {%- set system_message.value = message.content -%}
12
+ {%- endfor -%}
13
+ {%- if system_message.value -%}
14
+ {{- system_message.value -}}
15
+ {%- endif -%}
16
+
17
+ {%- for message in messages -%}
18
+ {%- if message.role == "user" -%}
19
+ {{- '<|User|>' -}}
20
+ {%- if message.content is string -%}
21
+ {{- message.content -}}
22
+ {%- elif message.content is iterable and message.content is not string -%}
23
+ {%- for item in message.content if item.type == "text" -%}
24
+ {{- item.text -}}
25
+ {%- endfor -%}
26
+ {%- endif -%}
27
+
28
+ {%- elif message.role == "assistant" -%}
29
+ {%- set thinking_tag = "" -%}
30
+ {%- if enable_thinking is defined -%}
31
+ {%- set thinking_tag = "</think>" if not enable_thinking else "<think>" -%}
32
+ {%- endif -%}
33
+ {{- '<|Assistant|>' + thinking_tag -}}
34
+
35
+ {%- if message.content is string -%}
36
+ {{- message.content -}}
37
+ {%- elif message.content is iterable and message.content is not string -%}
38
+ {%- for item in message.content if item.type == "text" -%}
39
+ {{- item.text -}}
40
+ {%- endfor -%}
41
+ {%- endif -%}
42
+
43
+ {{- '<|end_of_sentence|>' -}}
44
+ {%- endif -%}
45
+ {%- endfor -%}
46
+
47
+ {%- if add_generation_prompt -%}
48
+ {{- '<|Assistant|>' -}}
49
+ {%- if enable_thinking is defined -%}
50
+ {{- "</think>" if not enable_thinking else "<think>" -}}
51
+ {%- endif -%}
52
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "YuanVLChatModel"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_yuanvl.YuanVLChatConfig",
8
+ "AutoModel": "modeling_yuanvl_chat.YuanVLChatModel",
9
+ "AutoModelForCausalLM": "modeling_yuanvl_chat.YuanVLChatModel"
10
+ },
11
+ "clip_download_path": "path/to/internvit-448",
12
+ "clip_model_name": "InternViT-448",
13
+ "downsample_ratio": 0.5,
14
+ "dynamic_image_size": true,
15
+ "eos_token_id": 77185,
16
+ "force_image_size": 448,
17
+ "imagemlp_recompute": true,
18
+ "img_context_token_id": 77188,
19
+ "llm_config": {
20
+ "_from_model_config": true,
21
+ "architectures": [
22
+ "YuanForCausalLM"
23
+ ],
24
+ "attention_projection_size": 4096,
25
+ "attn_dropout": 0.0,
26
+ "attn_mask_type": "causal",
27
+ "auto_map": {
28
+ "AutoConfig": "configuration_yuanvl.YuanConfig",
29
+ "AutoModelForCausalLM": "yuanvl.YuanForCausalLM"
30
+ },
31
+ "bos_token": "<BOS>",
32
+ "bos_token_id": 134960,
33
+ "causal_mask": true,
34
+ "dropout": 0,
35
+ "eod_token": "<eod>",
36
+ "eod_token_id": 77185,
37
+ "ffn_hidden_size": 8192,
38
+ "head_dim": 256,
39
+ "hidden_act": "silu",
40
+ "hidden_size": 2048,
41
+ "initializer_range": 0.02,
42
+ "intermediate_size": 8192,
43
+ "lf_conv2d_group": 1,
44
+ "lf_conv2d_num_pad": 0,
45
+ "mask_token_id": 77185,
46
+ "max_position_embeddings": 131072,
47
+ "model_max_length": 131072,
48
+ "model_type": "yuan2",
49
+ "moe_config": {
50
+ "ffn_hidden_size": 8192,
51
+ "gated_linear_unit": true,
52
+ "moe_num_experts": 32,
53
+ "moe_top_k": 2,
54
+ "norm_topk_prob": true,
55
+ "num_attention_router_heads": 1,
56
+ "router_type": "attn_router"
57
+ },
58
+ "num_attention_heads": 16,
59
+ "num_hidden_layers": 24,
60
+ "output_router_logits": true,
61
+ "pad_token_id": 77188,
62
+ "rep_token": "<rep>",
63
+ "rep_token_id": 134962,
64
+ "reset_attention_mask": false,
65
+ "reset_position_ids": false,
66
+ "rms_norm_eps": 1e-06,
67
+ "rotary_base": 1000000,
68
+ "rotary_percent": 0.5,
69
+ "sep_token": "<sep>",
70
+ "sep_token_id": 77187,
71
+ "tie_word_embeddings": false,
72
+ "tokenizer_class": "YuanVLTokenizer",
73
+ "torch_dtype": "bfloat16",
74
+ "use_bias": false,
75
+ "use_cache": true,
76
+ "use_flash_attention": true,
77
+ "use_lf_gate": true,
78
+ "use_lfa_bias": true,
79
+ "use_loss_mask": false,
80
+ "use_moe": true,
81
+ "use_rope_scaling": false,
82
+ "vocab_size": 136064
83
+ },
84
+ "max_dynamic_patch": 9,
85
+ "min_dynamic_patch": 1,
86
+ "model_type": "yuanvl",
87
+ "output_attentions": false,
88
+ "ps_version": "v2",
89
+ "quantization_config": {
90
+ "config_groups": {
91
+ "group_0": {
92
+ "format": "pack-quantized",
93
+ "input_activations": null,
94
+ "output_activations": null,
95
+ "targets": [
96
+ "Linear"
97
+ ],
98
+ "weights": {
99
+ "actorder": null,
100
+ "block_structure": null,
101
+ "dynamic": false,
102
+ "group_size": 128,
103
+ "num_bits": 4,
104
+ "observer": "minmax",
105
+ "observer_kwargs": {},
106
+ "strategy": "group",
107
+ "symmetric": true,
108
+ "type": "int"
109
+ }
110
+ }
111
+ },
112
+ "format": "pack-quantized",
113
+ "global_compression_ratio": null,
114
+ "ignore": [
115
+ ".encoder.layers.0.attn.qkv",
116
+ ".encoder.layers.0.attn.proj",
117
+ ".encoder.layers.0.mlp.fc1",
118
+ ".encoder.layers.0.mlp.fc2",
119
+ ".encoder.layers.1.attn.qkv",
120
+ ".encoder.layers.1.attn.proj",
121
+ ".encoder.layers.1.mlp.fc1",
122
+ ".encoder.layers.1.mlp.fc2",
123
+ ".encoder.layers.2.attn.qkv",
124
+ ".encoder.layers.2.attn.proj",
125
+ ".encoder.layers.2.mlp.fc1",
126
+ ".encoder.layers.2.mlp.fc2",
127
+ ".encoder.layers.3.attn.qkv",
128
+ ".encoder.layers.3.attn.proj",
129
+ ".encoder.layers.3.mlp.fc1",
130
+ ".encoder.layers.3.mlp.fc2",
131
+ ".encoder.layers.4.attn.qkv",
132
+ ".encoder.layers.4.attn.proj",
133
+ ".encoder.layers.4.mlp.fc1",
134
+ ".encoder.layers.4.mlp.fc2",
135
+ ".encoder.layers.5.attn.qkv",
136
+ ".encoder.layers.5.attn.proj",
137
+ ".encoder.layers.5.mlp.fc1",
138
+ ".encoder.layers.5.mlp.fc2",
139
+ ".encoder.layers.6.attn.qkv",
140
+ ".encoder.layers.6.attn.proj",
141
+ ".encoder.layers.6.mlp.fc1",
142
+ ".encoder.layers.6.mlp.fc2",
143
+ ".encoder.layers.7.attn.qkv",
144
+ ".encoder.layers.7.attn.proj",
145
+ ".encoder.layers.7.mlp.fc1",
146
+ ".encoder.layers.7.mlp.fc2",
147
+ ".encoder.layers.8.attn.qkv",
148
+ ".encoder.layers.8.attn.proj",
149
+ ".encoder.layers.8.mlp.fc1",
150
+ ".encoder.layers.8.mlp.fc2",
151
+ ".encoder.layers.9.attn.qkv",
152
+ ".encoder.layers.9.attn.proj",
153
+ ".encoder.layers.9.mlp.fc1",
154
+ ".encoder.layers.9.mlp.fc2",
155
+ ".encoder.layers.10.attn.qkv",
156
+ ".encoder.layers.10.attn.proj",
157
+ ".encoder.layers.10.mlp.fc1",
158
+ ".encoder.layers.10.mlp.fc2",
159
+ ".encoder.layers.11.attn.qkv",
160
+ ".encoder.layers.11.attn.proj",
161
+ ".encoder.layers.11.mlp.fc1",
162
+ ".encoder.layers.11.mlp.fc2",
163
+ ".encoder.layers.12.attn.qkv",
164
+ ".encoder.layers.12.attn.proj",
165
+ ".encoder.layers.12.mlp.fc1",
166
+ ".encoder.layers.12.mlp.fc2",
167
+ ".encoder.layers.13.attn.qkv",
168
+ ".encoder.layers.13.attn.proj",
169
+ ".encoder.layers.13.mlp.fc1",
170
+ ".encoder.layers.13.mlp.fc2",
171
+ ".encoder.layers.14.attn.qkv",
172
+ ".encoder.layers.14.attn.proj",
173
+ ".encoder.layers.14.mlp.fc1",
174
+ ".encoder.layers.14.mlp.fc2",
175
+ ".encoder.layers.15.attn.qkv",
176
+ ".encoder.layers.15.attn.proj",
177
+ ".encoder.layers.15.mlp.fc1",
178
+ ".encoder.layers.15.mlp.fc2",
179
+ ".encoder.layers.16.attn.qkv",
180
+ ".encoder.layers.16.attn.proj",
181
+ ".encoder.layers.16.mlp.fc1",
182
+ ".encoder.layers.16.mlp.fc2",
183
+ ".encoder.layers.17.attn.qkv",
184
+ ".encoder.layers.17.attn.proj",
185
+ ".encoder.layers.17.mlp.fc1",
186
+ ".encoder.layers.17.mlp.fc2",
187
+ ".encoder.layers.18.attn.qkv",
188
+ ".encoder.layers.18.attn.proj",
189
+ ".encoder.layers.18.mlp.fc1",
190
+ ".encoder.layers.18.mlp.fc2",
191
+ ".encoder.layers.19.attn.qkv",
192
+ ".encoder.layers.19.attn.proj",
193
+ ".encoder.layers.19.mlp.fc1",
194
+ ".encoder.layers.19.mlp.fc2",
195
+ ".encoder.layers.20.attn.qkv",
196
+ ".encoder.layers.20.attn.proj",
197
+ ".encoder.layers.20.mlp.fc1",
198
+ ".encoder.layers.20.mlp.fc2",
199
+ ".encoder.layers.21.attn.qkv",
200
+ ".encoder.layers.21.attn.proj",
201
+ ".encoder.layers.21.mlp.fc1",
202
+ ".encoder.layers.21.mlp.fc2",
203
+ ".encoder.layers.22.attn.qkv",
204
+ ".encoder.layers.22.attn.proj",
205
+ ".encoder.layers.22.mlp.fc1",
206
+ ".encoder.layers.22.mlp.fc2",
207
+ ".encoder.layers.23.attn.qkv",
208
+ ".encoder.layers.23.attn.proj",
209
+ ".encoder.layers.23.mlp.fc1",
210
+ ".encoder.layers.23.mlp.fc2",
211
+ "language_model.lm_head",
212
+ "language_model.model.layers.0.mlp.router.query_key_value",
213
+ "language_model.model.layers.1.mlp.router.query_key_value",
214
+ "language_model.model.layers.2.mlp.router.query_key_value",
215
+ "language_model.model.layers.3.mlp.router.query_key_value",
216
+ "language_model.model.layers.4.mlp.router.query_key_value",
217
+ "language_model.model.layers.5.mlp.router.query_key_value",
218
+ "language_model.model.layers.6.mlp.router.query_key_value",
219
+ "language_model.model.layers.7.mlp.router.query_key_value",
220
+ "language_model.model.layers.8.mlp.router.query_key_value",
221
+ "language_model.model.layers.9.mlp.router.query_key_value",
222
+ "language_model.model.layers.10.mlp.router.query_key_value",
223
+ "language_model.model.layers.11.mlp.router.query_key_value",
224
+ "language_model.model.layers.12.mlp.router.query_key_value",
225
+ "language_model.model.layers.13.mlp.router.query_key_value",
226
+ "language_model.model.layers.14.mlp.router.query_key_value",
227
+ "language_model.model.layers.15.mlp.router.query_key_value",
228
+ "language_model.model.layers.16.mlp.router.query_key_value",
229
+ "language_model.model.layers.17.mlp.router.query_key_value",
230
+ "language_model.model.layers.18.mlp.router.query_key_value",
231
+ "language_model.model.layers.19.mlp.router.query_key_value",
232
+ "language_model.model.layers.20.mlp.router.query_key_value",
233
+ "language_model.model.layers.21.mlp.router.query_key_value",
234
+ "language_model.model.layers.22.mlp.router.query_key_value",
235
+ "language_model.model.layers.23.mlp.router.query_key_value",
236
+ "imagemlp.up_proj",
237
+ "imagemlp.gate_proj",
238
+ "imagemlp.down_proj"
239
+ ],
240
+ "kv_cache_scheme": null,
241
+ "quant_method": "compressed-tensors",
242
+ "quantization_status": "compressed",
243
+ "sparsity_config": {},
244
+ "transform_config": {},
245
+ "version": "0.11.0"
246
+ },
247
+ "select_layer": -1,
248
+ "template": "yuan-chat",
249
+ "torch_dtype": "bfloat16",
250
+ "transformers_version": null,
251
+ "use_backbone_lora": 0,
252
+ "use_cache": true,
253
+ "use_llm_lora": 0,
254
+ "use_thumbnail": true,
255
+ "vision_config": {
256
+ "architectures": [
257
+ "InternVisionModel"
258
+ ],
259
+ "attention_dropout": 0.0,
260
+ "drop_path_rate": 0.0,
261
+ "dropout": 0.0,
262
+ "hidden_act": "gelu",
263
+ "hidden_size": 1024,
264
+ "image_size": 448,
265
+ "initializer_factor": 1.0,
266
+ "initializer_range": 0.02,
267
+ "intermediate_size": 4096,
268
+ "layer_norm_eps": 1e-06,
269
+ "model_type": "intern_vit_6b",
270
+ "norm_type": "layer_norm",
271
+ "num_attention_heads": 16,
272
+ "num_channels": 3,
273
+ "num_hidden_layers": 24,
274
+ "patch_size": 14,
275
+ "qk_normalization": false,
276
+ "qkv_bias": true,
277
+ "torch_dtype": "bfloat16",
278
+ "use_bfloat16": true,
279
+ "use_flash_attn": false
280
+ }
281
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+ Args:
23
+ num_channels (`int`, *optional*, defaults to 3):
24
+ Number of color channels in the input images (e.g., 3 for RGB).
25
+ patch_size (`int`, *optional*, defaults to 14):
26
+ The size (resolution) of each patch.
27
+ image_size (`int`, *optional*, defaults to 224):
28
+ The size (resolution) of each image.
29
+ qkv_bias (`bool`, *optional*, defaults to `False`):
30
+ Whether to add a bias to the queries and values in the self-attention layers.
31
+ hidden_size (`int`, *optional*, defaults to 3200):
32
+ Dimensionality of the encoder layers and the pooler layer.
33
+ num_attention_heads (`int`, *optional*, defaults to 25):
34
+ Number of attention heads for each attention layer in the Transformer encoder.
35
+ intermediate_size (`int`, *optional*, defaults to 12800):
36
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
37
+ qk_normalization (`bool`, *optional*, defaults to `True`):
38
+ Whether to normalize the queries and keys in the self-attention layers.
39
+ num_hidden_layers (`int`, *optional*, defaults to 48):
40
+ Number of hidden layers in the Transformer encoder.
41
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
42
+ Whether to use flash attention mechanism.
43
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
44
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
45
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
46
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
47
+ The epsilon used by the layer normalization layers.
48
+ dropout (`float`, *optional*, defaults to 0.0):
49
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
50
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
51
+ Dropout rate for stochastic depth.
52
+ attention_dropout (`float`, *optional*, defaults to 0.0):
53
+ The dropout ratio for the attention probabilities.
54
+ initializer_range (`float`, *optional*, defaults to 0.02):
55
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
56
+ initializer_factor (`float`, *optional*, defaults to 0.1):
57
+ A factor for layer scale.
58
+ """
59
+
60
+ model_type = 'intern_vit_6b'
61
+
62
+ def __init__(
63
+ self,
64
+ num_channels=3,
65
+ patch_size=14,
66
+ image_size=224,
67
+ qkv_bias=False,
68
+ hidden_size=3200,
69
+ num_attention_heads=25,
70
+ intermediate_size=12800,
71
+ qk_normalization=True,
72
+ num_hidden_layers=48,
73
+ use_flash_attn=True,
74
+ hidden_act='gelu',
75
+ norm_type='rms_norm',
76
+ layer_norm_eps=1e-6,
77
+ dropout=0.0,
78
+ drop_path_rate=0.0,
79
+ attention_dropout=0.0,
80
+ initializer_range=0.02,
81
+ initializer_factor=0.1,
82
+ **kwargs,
83
+ ):
84
+ super().__init__(**kwargs)
85
+
86
+ self.hidden_size = hidden_size
87
+ self.intermediate_size = intermediate_size
88
+ self.dropout = dropout
89
+ self.drop_path_rate = drop_path_rate
90
+ self.num_hidden_layers = num_hidden_layers
91
+ self.num_attention_heads = num_attention_heads
92
+ self.num_channels = num_channels
93
+ self.patch_size = patch_size
94
+ self.image_size = image_size
95
+ self.initializer_range = initializer_range
96
+ self.initializer_factor = initializer_factor
97
+ self.attention_dropout = attention_dropout
98
+ self.layer_norm_eps = layer_norm_eps
99
+ self.hidden_act = hidden_act
100
+ self.norm_type = norm_type
101
+ self.qkv_bias = qkv_bias
102
+ self.qk_normalization = qk_normalization
103
+ self.use_flash_attn = use_flash_attn
104
+
105
+ @classmethod
106
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
107
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
108
+
109
+ if 'vision_config' in config_dict:
110
+ config_dict = config_dict['vision_config']
111
+
112
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
113
+ logger.warning(
114
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
115
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
116
+ )
117
+
118
+ return cls.from_dict(config_dict, **kwargs)
configuration_yuan.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from transformers.configuration_utils import PretrainedConfig
3
+
4
+
5
+ class YuanConfig(PretrainedConfig):
6
+ model_type = "yuan2"
7
+ keys_to_ignore_at_inference = ["past_key_values"]
8
+
9
+ def __init__(
10
+ self,
11
+ vocab_size=135040,
12
+ hidden_size=2048,
13
+ ffn_hidden_size=8192,
14
+ intermediate_size=8192,
15
+ num_hidden_layers=24,
16
+ num_attention_heads=32,
17
+ hidden_act="silu",
18
+ model_max_length=8192,
19
+ initializer_range=0.02,
20
+ rms_norm_eps=1e-6,
21
+ use_cache=True,
22
+ pad_token_id=77185,
23
+ bos_token_id=77185,
24
+ eos_token_id=77185,
25
+ tie_word_embeddings=True,
26
+ **kwargs,
27
+ ):
28
+ self.vocab_size = vocab_size
29
+ self.model_max_length = model_max_length
30
+ self.hidden_size = hidden_size
31
+ self.ffn_hidden_size = ffn_hidden_size
32
+ self.intermediate_size = intermediate_size
33
+ self.num_hidden_layers = num_hidden_layers
34
+ self.num_attention_heads = num_attention_heads
35
+ self.hidden_act = hidden_act
36
+ self.initializer_range = initializer_range
37
+ self.rms_norm_eps = rms_norm_eps
38
+ self.use_cache = use_cache
39
+ super().__init__(
40
+ pad_token_id=pad_token_id,
41
+ bos_token_id=bos_token_id,
42
+ eos_token_id=eos_token_id,
43
+ tie_word_embeddings=tie_word_embeddings,
44
+ **kwargs,
45
+ )
46
+
configuration_yuanvl.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_yuan import YuanConfig
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class YuanVLChatConfig(PretrainedConfig):
20
+ model_type = 'yuanvl'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ select_layer=-1,
30
+ force_image_size=None,
31
+ downsample_ratio=0.5,
32
+ template=None,
33
+ dynamic_image_size=False,
34
+ use_thumbnail=False,
35
+ ps_version='v1',
36
+ min_dynamic_patch=1,
37
+ max_dynamic_patch=6,
38
+ img_context_token_id=77188,
39
+ **kwargs):
40
+ super().__init__(**kwargs)
41
+
42
+ if vision_config is None:
43
+ vision_config = {'architectures': ['InternVisionModel']}
44
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
45
+
46
+ if llm_config is None:
47
+ llm_config = {'architectures': ['YuanForCausalLM']}
48
+ logger.info('llm_config is None. Initializing the YuanForCausalLM config with default values (`YuanForCausalLM`).')
49
+
50
+ self.vision_config = InternVisionConfig(**vision_config)
51
+ if llm_config.get('architectures')[0] == 'YuanForCausalLM':
52
+ self.llm_config = YuanConfig(**llm_config)
53
+ else:
54
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
55
+ self.use_backbone_lora = use_backbone_lora
56
+ self.use_llm_lora = use_llm_lora
57
+ self.select_layer = select_layer
58
+ self.force_image_size = force_image_size
59
+ self.downsample_ratio = downsample_ratio
60
+ self.template = template
61
+ self.dynamic_image_size = dynamic_image_size
62
+ self.use_thumbnail = use_thumbnail
63
+ self.ps_version = ps_version # pixel shuffle version
64
+ self.min_dynamic_patch = min_dynamic_patch
65
+ self.max_dynamic_patch = max_dynamic_patch
66
+ self.img_context_token_id = img_context_token_id
67
+
68
+ logger.info(f'vision_select_layer: {self.select_layer}')
69
+ logger.info(f'ps_version: {self.ps_version}')
70
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
71
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
72
+
73
+ def to_dict(self):
74
+ """
75
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
76
+ Returns:
77
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
78
+ """
79
+ output = copy.deepcopy(self.__dict__)
80
+ output['vision_config'] = self.vision_config.to_dict()
81
+ output['llm_config'] = self.llm_config.to_dict()
82
+ output['model_type'] = self.__class__.model_type
83
+ output['use_backbone_lora'] = self.use_backbone_lora
84
+ output['use_llm_lora'] = self.use_llm_lora
85
+ output['select_layer'] = self.select_layer
86
+ output['force_image_size'] = self.force_image_size
87
+ output['downsample_ratio'] = self.downsample_ratio
88
+ output['template'] = self.template
89
+ output['dynamic_image_size'] = self.dynamic_image_size
90
+ output['use_thumbnail'] = self.use_thumbnail
91
+ output['ps_version'] = self.ps_version
92
+ output['min_dynamic_patch'] = self.min_dynamic_patch
93
+ output['max_dynamic_patch'] = self.max_dynamic_patch
94
+
95
+ return output
conversation.py ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
4
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
5
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Conversation:
38
+ """A class that manages prompt templates and keeps all conversation history."""
39
+
40
+ # The name of this template
41
+ name: str
42
+ # The template of the system prompt
43
+ system_template: str = '{system_message}'
44
+ # The system message
45
+ system_message: str = ''
46
+ # The names of two roles
47
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
48
+ # All messages. Each item is (role, message).
49
+ messages: List[List[str]] = ()
50
+ # The number of few shot examples
51
+ offset: int = 0
52
+ # The separator style and configurations
53
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
+ sep: str = '\n'
55
+ sep2: str = None
56
+ # Stop criteria (the default one is EOS token)
57
+ stop_str: Union[str, List[str]] = None
58
+ # Stops generation if meeting any token in this list
59
+ stop_token_ids: List[int] = None
60
+
61
+ def get_prompt(self) -> str:
62
+ """Get the prompt for generation."""
63
+ system_prompt = self.system_template.format(system_message=self.system_message)
64
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
+ ret = system_prompt + self.sep
66
+ for role, message in self.messages:
67
+ if message:
68
+ ret += role + ': ' + message + self.sep
69
+ else:
70
+ ret += role + ':'
71
+ return ret
72
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
+ seps = [self.sep, self.sep2]
74
+ ret = system_prompt + seps[0]
75
+ for i, (role, message) in enumerate(self.messages):
76
+ if message:
77
+ ret += role + ': ' + message + seps[i % 2]
78
+ else:
79
+ ret += role + ':'
80
+ return ret
81
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
+ ret = system_prompt + self.sep
83
+ for role, message in self.messages:
84
+ if message:
85
+ ret += role + ': ' + message + self.sep
86
+ else:
87
+ ret += role + ': ' # must be end with a space
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
+ ret = '' if system_prompt == '' else system_prompt + self.sep
91
+ for role, message in self.messages:
92
+ if message:
93
+ ret += role + '\n' + message + self.sep
94
+ else:
95
+ ret += role + '\n'
96
+ return ret
97
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
+ ret = system_prompt
99
+ for role, message in self.messages:
100
+ if message:
101
+ ret += role + message + self.sep
102
+ else:
103
+ ret += role
104
+ return ret
105
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
+ seps = [self.sep, self.sep2]
107
+ ret = system_prompt
108
+ for i, (role, message) in enumerate(self.messages):
109
+ if message:
110
+ ret += role + message + seps[i % 2]
111
+ else:
112
+ ret += role
113
+ return ret
114
+ elif self.sep_style == SeparatorStyle.RWKV:
115
+ ret = system_prompt
116
+ for i, (role, message) in enumerate(self.messages):
117
+ if message:
118
+ ret += (
119
+ role
120
+ + ': '
121
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
+ )
123
+ ret += '\n\n'
124
+ else:
125
+ ret += role + ':'
126
+ return ret
127
+ elif self.sep_style == SeparatorStyle.LLAMA2:
128
+ seps = [self.sep, self.sep2]
129
+ if self.system_message:
130
+ ret = system_prompt
131
+ else:
132
+ ret = '[INST] '
133
+ for i, (role, message) in enumerate(self.messages):
134
+ tag = self.roles[i % 2]
135
+ if message:
136
+ if i == 0:
137
+ ret += message + ' '
138
+ else:
139
+ ret += tag + ' ' + message + seps[i % 2]
140
+ else:
141
+ ret += tag
142
+ return ret
143
+ elif self.sep_style == SeparatorStyle.CHATGLM:
144
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
+ round_add_n = 1 if self.name == 'chatglm2' else 0
147
+ if system_prompt:
148
+ ret = system_prompt + self.sep
149
+ else:
150
+ ret = ''
151
+
152
+ for i, (role, message) in enumerate(self.messages):
153
+ if i % 2 == 0:
154
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
+
156
+ if message:
157
+ ret += f'{role}:{message}{self.sep}'
158
+ else:
159
+ ret += f'{role}:'
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.CHATML:
162
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
+ for role, message in self.messages:
164
+ if message:
165
+ ret += role + '\n' + message + self.sep + '\n'
166
+ else:
167
+ ret += role + '\n'
168
+ return ret
169
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
170
+ ret = ''
171
+ if self.system_message:
172
+ ret += system_prompt
173
+ for role, message in self.messages:
174
+ if message:
175
+ ret += role + '\n' + ' ' + message
176
+ else:
177
+ ret += role
178
+ return ret
179
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
180
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
+ seps = [self.sep, self.sep2]
182
+ ret = system_prompt
183
+ for i, (role, message) in enumerate(self.messages):
184
+ # if i % 2 == 0:
185
+ # ret += "<s>"
186
+ if message:
187
+ ret += role + ':' + message + seps[i % 2] + '\n'
188
+ else:
189
+ ret += role + ':'
190
+ return ret
191
+ elif self.sep_style == SeparatorStyle.DOLLY:
192
+ seps = [self.sep, self.sep2]
193
+ ret = system_prompt
194
+ for i, (role, message) in enumerate(self.messages):
195
+ if message:
196
+ ret += role + ':\n' + message + seps[i % 2]
197
+ if i % 2 == 1:
198
+ ret += '\n\n'
199
+ else:
200
+ ret += role + ':\n'
201
+ return ret
202
+ elif self.sep_style == SeparatorStyle.PHOENIX:
203
+ ret = system_prompt
204
+ for role, message in self.messages:
205
+ if message:
206
+ ret += role + ': ' + '<s>' + message + '</s>'
207
+ else:
208
+ ret += role + ': ' + '<s>'
209
+ return ret
210
+ elif self.sep_style == SeparatorStyle.ROBIN:
211
+ ret = system_prompt + self.sep
212
+ for role, message in self.messages:
213
+ if message:
214
+ ret += role + ':\n' + message + self.sep
215
+ else:
216
+ ret += role + ':\n'
217
+ return ret
218
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
+ ret = ''
220
+ if self.system_message:
221
+ ret += system_prompt + self.sep
222
+ for role, message in self.messages:
223
+ if message:
224
+ ret += role + ': ' + message + self.sep
225
+ else:
226
+ ret += role + ':'
227
+
228
+ return ret
229
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
+ seps = [self.sep, self.sep2]
231
+ ret = self.system_message + seps[0]
232
+ for i, (role, message) in enumerate(self.messages):
233
+ if message:
234
+ ret += role + ': ' + message + seps[i % 2]
235
+ else:
236
+ ret += role + ':'
237
+ return ret
238
+ elif self.sep_style == SeparatorStyle.MPT:
239
+ ret = system_prompt + self.sep
240
+ for role, message in self.messages:
241
+ if message:
242
+ if type(message) is tuple:
243
+ message, _, _ = message
244
+ ret += role + message + self.sep
245
+ else:
246
+ ret += role
247
+ return ret
248
+ else:
249
+ raise ValueError(f'Invalid style: {self.sep_style}')
250
+
251
+ def set_system_message(self, system_message: str):
252
+ """Set the system message."""
253
+ self.system_message = system_message
254
+
255
+ def append_message(self, role: str, message: str):
256
+ """Append a new message."""
257
+ self.messages.append([role, message])
258
+
259
+ def update_last_message(self, message: str):
260
+ """Update the last output.
261
+ The last message is typically set to be None when constructing the prompt,
262
+ so we need to update it in-place after getting the response from a model.
263
+ """
264
+ self.messages[-1][1] = message
265
+
266
+ def to_gradio_chatbot(self):
267
+ """Convert the conversation to gradio chatbot format."""
268
+ ret = []
269
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
270
+ if i % 2 == 0:
271
+ ret.append([msg, None])
272
+ else:
273
+ ret[-1][-1] = msg
274
+ return ret
275
+
276
+ def to_openai_api_messages(self):
277
+ """Convert the conversation to OpenAI chat completion format."""
278
+ ret = [{'role': 'system', 'content': self.system_message}]
279
+
280
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
281
+ if i % 2 == 0:
282
+ ret.append({'role': 'user', 'content': msg})
283
+ else:
284
+ if msg is not None:
285
+ ret.append({'role': 'assistant', 'content': msg})
286
+ return ret
287
+
288
+ def copy(self):
289
+ return Conversation(
290
+ name=self.name,
291
+ system_template=self.system_template,
292
+ system_message=self.system_message,
293
+ roles=self.roles,
294
+ messages=[[x, y] for x, y in self.messages],
295
+ offset=self.offset,
296
+ sep_style=self.sep_style,
297
+ sep=self.sep,
298
+ sep2=self.sep2,
299
+ stop_str=self.stop_str,
300
+ stop_token_ids=self.stop_token_ids,
301
+ )
302
+
303
+ def dict(self):
304
+ return {
305
+ 'template_name': self.name,
306
+ 'system_message': self.system_message,
307
+ 'roles': self.roles,
308
+ 'messages': self.messages,
309
+ 'offset': self.offset,
310
+ }
311
+
312
+
313
+ # A global registry for all conversation templates
314
+ conv_templates: Dict[str, Conversation] = {}
315
+
316
+
317
+ def register_conv_template(template: Conversation, override: bool = False):
318
+ """Register a new conversation template."""
319
+ if not override:
320
+ assert (
321
+ template.name not in conv_templates
322
+ ), f'{template.name} has been registered.'
323
+
324
+ conv_templates[template.name] = template
325
+
326
+
327
+ def get_conv_template(name: str) -> Conversation:
328
+ """Get a conversation template."""
329
+ return conv_templates[name].copy()
330
+
331
+
332
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
333
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
334
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
335
+ # Therefore, they are completely equivalent during inference.
336
+ register_conv_template(
337
+ Conversation(
338
+ name='Hermes-2',
339
+ system_template='<|im_start|>system\n{system_message}',
340
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
341
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
342
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
343
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
344
+ sep_style=SeparatorStyle.MPT,
345
+ sep='<|im_end|>',
346
+ stop_str='<|endoftext|>',
347
+ )
348
+ )
349
+
350
+
351
+ register_conv_template(
352
+ Conversation(
353
+ name='internlm2-chat',
354
+ system_template='<|im_start|>system\n{system_message}',
355
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
356
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
357
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
358
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
359
+ sep_style=SeparatorStyle.MPT,
360
+ sep='<|im_end|>',
361
+ )
362
+ )
363
+
364
+
365
+ register_conv_template(
366
+ Conversation(
367
+ name='phi3-chat',
368
+ system_template='<|system|>\n{system_message}',
369
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
370
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
371
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
372
+ roles=('<|user|>\n', '<|assistant|>\n'),
373
+ sep_style=SeparatorStyle.MPT,
374
+ sep='<|end|>',
375
+ )
376
+ )
377
+
378
+
379
+ register_conv_template(
380
+ Conversation(
381
+ name='internvl2_5',
382
+ system_template='<|im_start|>system\n{system_message}',
383
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
384
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
385
+ sep_style=SeparatorStyle.MPT,
386
+ sep='<|im_end|>\n',
387
+ )
388
+ )
389
+
390
+ register_conv_template(
391
+ Conversation(
392
+ name='yuan-chat',
393
+ system_template='<|im_start|>system\n{system_message}',
394
+ system_message='你是IEI-源多模态模型,英文名是YuanVL,是由浪潮信息开发的多模态大语言模型。',
395
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
396
+ sep_style=SeparatorStyle.MPT,
397
+ sep='<|im_end|>\n',
398
+ )
399
+ )
flash_attention.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/Dao-AILab/flash-attention/blob/v0.2.8/flash_attn/flash_attention.py
2
+ import torch
3
+ import torch.nn as nn
4
+ from einops import rearrange
5
+
6
+ try: # v1
7
+ from flash_attn.flash_attn_interface import \
8
+ flash_attn_unpadded_qkvpacked_func
9
+ except: # v2
10
+ from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
11
+
12
+ from flash_attn.bert_padding import pad_input, unpad_input
13
+
14
+
15
+ class FlashAttention(nn.Module):
16
+ """Implement the scaled dot product attention with softmax.
17
+ Arguments
18
+ ---------
19
+ softmax_scale: The temperature to use for the softmax attention.
20
+ (default: 1/sqrt(d_keys) where d_keys is computed at
21
+ runtime)
22
+ attention_dropout: The dropout rate to apply to the attention
23
+ (default: 0.0)
24
+ """
25
+
26
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
27
+ super().__init__()
28
+ self.softmax_scale = softmax_scale
29
+ self.dropout_p = attention_dropout
30
+
31
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
32
+ max_s=None, need_weights=False):
33
+ """Implements the multihead softmax attention.
34
+ Arguments
35
+ ---------
36
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
37
+ if unpadded: (nnz, 3, h, d)
38
+ key_padding_mask: a bool tensor of shape (B, S)
39
+ """
40
+ assert not need_weights
41
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
42
+ assert qkv.is_cuda
43
+
44
+ if cu_seqlens is None:
45
+ batch_size = qkv.shape[0]
46
+ seqlen = qkv.shape[1]
47
+ if key_padding_mask is None:
48
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
49
+ max_s = seqlen
50
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
51
+ device=qkv.device)
52
+ output = flash_attn_unpadded_qkvpacked_func(
53
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
54
+ softmax_scale=self.softmax_scale, causal=causal
55
+ )
56
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
57
+ else:
58
+ nheads = qkv.shape[-2]
59
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
60
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
61
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
62
+ output_unpad = flash_attn_unpadded_qkvpacked_func(
63
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
64
+ softmax_scale=self.softmax_scale, causal=causal
65
+ )
66
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
67
+ indices, batch_size, seqlen),
68
+ 'b s (h d) -> b s h d', h=nheads)
69
+ else:
70
+ assert max_s is not None
71
+ output = flash_attn_unpadded_qkvpacked_func(
72
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
73
+ softmax_scale=self.softmax_scale, causal=causal
74
+ )
75
+
76
+ return output, None
generation_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": 77185,
4
+ "transformers_version": "4.55.2"
5
+ }
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_intern_vit.py ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from einops import rearrange
12
+ from timm.models.layers import DropPath
13
+ from torch import nn
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+
20
+ from .configuration_intern_vit import InternVisionConfig
21
+ #try:
22
+ from .flash_attention import FlashAttention
23
+ has_flash_attn = True
24
+ #except:
25
+ # print('FlashAttention is not installed.')
26
+ # has_flash_attn = False
27
+
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+
32
+ class InternRMSNorm(nn.Module):
33
+ def __init__(self, hidden_size, eps=1e-6):
34
+ super().__init__()
35
+ self.weight = nn.Parameter(torch.ones(hidden_size))
36
+ self.variance_epsilon = eps
37
+
38
+ def forward(self, hidden_states):
39
+ input_dtype = hidden_states.dtype
40
+ hidden_states = hidden_states.to(torch.float32)
41
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
42
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
43
+ return self.weight * hidden_states.to(input_dtype)
44
+
45
+
46
+ try:
47
+ from apex.normalization import FusedRMSNorm
48
+
49
+ InternRMSNorm = FusedRMSNorm # noqa
50
+
51
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
52
+ except ImportError:
53
+ # using the normal InternRMSNorm
54
+ pass
55
+ except Exception:
56
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
57
+ pass
58
+
59
+
60
+ NORM2FN = {
61
+ 'rms_norm': InternRMSNorm,
62
+ 'layer_norm': nn.LayerNorm,
63
+ }
64
+
65
+
66
+ class InternVisionEmbeddings(nn.Module):
67
+ def __init__(self, config: InternVisionConfig):
68
+ super().__init__()
69
+ self.config = config
70
+ self.embed_dim = config.hidden_size
71
+ self.image_size = config.image_size
72
+ self.patch_size = config.patch_size
73
+
74
+ self.class_embedding = nn.Parameter(
75
+ torch.randn(1, 1, self.embed_dim),
76
+ )
77
+
78
+ self.patch_embedding = nn.Conv2d(
79
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
80
+ )
81
+
82
+ self.num_patches = (self.image_size // self.patch_size) ** 2
83
+ self.num_positions = self.num_patches + 1
84
+
85
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
86
+
87
+ def _get_pos_embed(self, pos_embed, H, W):
88
+ target_dtype = pos_embed.dtype
89
+ pos_embed = pos_embed.float().reshape(
90
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
91
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\
92
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
93
+ return pos_embed
94
+
95
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
96
+ target_dtype = self.patch_embedding.weight.dtype
97
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
98
+ batch_size, _, height, width = patch_embeds.shape
99
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
100
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
101
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
102
+ position_embedding = torch.cat([
103
+ self.position_embedding[:, :1, :],
104
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
105
+ ], dim=1)
106
+ embeddings = embeddings + position_embedding.to(target_dtype)
107
+ return embeddings
108
+
109
+
110
+ class InternAttention(nn.Module):
111
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
112
+
113
+ def __init__(self, config: InternVisionConfig):
114
+ super().__init__()
115
+ self.config = config
116
+ self.embed_dim = config.hidden_size
117
+ self.num_heads = config.num_attention_heads
118
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
119
+ self.use_flash_attn = True # modify
120
+ if config.use_flash_attn and not has_flash_attn:
121
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
122
+ self.head_dim = self.embed_dim // self.num_heads
123
+ if self.head_dim * self.num_heads != self.embed_dim:
124
+ raise ValueError(
125
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
126
+ f' {self.num_heads}).'
127
+ )
128
+
129
+ self.scale = self.head_dim ** -0.5
130
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
131
+ self.attn_drop = nn.Dropout(config.attention_dropout)
132
+ self.proj_drop = nn.Dropout(config.dropout)
133
+
134
+ self.qk_normalization = config.qk_normalization
135
+
136
+ if self.qk_normalization:
137
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
138
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
139
+
140
+ if self.use_flash_attn:
141
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
142
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
143
+
144
+ def _naive_attn(self, x):
145
+ B, N, C = x.shape
146
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
147
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
148
+
149
+ if self.qk_normalization:
150
+ B_, H_, N_, D_ = q.shape
151
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
152
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
153
+
154
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
155
+ attn = attn.softmax(dim=-1)
156
+ attn = self.attn_drop(attn)
157
+
158
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
159
+ x = self.proj(x)
160
+ x = self.proj_drop(x)
161
+ return x
162
+
163
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
164
+ qkv = self.qkv(x)
165
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
166
+
167
+ if self.qk_normalization:
168
+ q, k, v = qkv.unbind(2)
169
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
170
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
171
+ qkv = torch.stack([q, k, v], dim=2)
172
+
173
+ context, _ = self.inner_attn(
174
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
175
+ )
176
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
177
+ outs = self.proj_drop(outs)
178
+ return outs
179
+
180
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
181
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
182
+ return x
183
+
184
+
185
+ class InternMLP(nn.Module):
186
+ def __init__(self, config: InternVisionConfig):
187
+ super().__init__()
188
+ self.config = config
189
+ self.act = ACT2FN[config.hidden_act]
190
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
191
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
192
+
193
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
194
+ hidden_states = self.fc1(hidden_states)
195
+ hidden_states = self.act(hidden_states)
196
+ hidden_states = self.fc2(hidden_states)
197
+ return hidden_states
198
+
199
+
200
+ class InternVisionEncoderLayer(nn.Module):
201
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
202
+ super().__init__()
203
+ self.embed_dim = config.hidden_size
204
+ self.intermediate_size = config.intermediate_size
205
+ self.norm_type = config.norm_type
206
+
207
+ self.attn = InternAttention(config)
208
+ self.mlp = InternMLP(config)
209
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
210
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
211
+
212
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
213
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
214
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
215
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
216
+
217
+ def forward(
218
+ self,
219
+ hidden_states: torch.Tensor,
220
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
221
+ """
222
+ Args:
223
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
224
+ """
225
+
226
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
227
+
228
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
229
+
230
+ return hidden_states
231
+
232
+
233
+ class InternVisionEncoder(nn.Module):
234
+ """
235
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
236
+ [`InternEncoderLayer`].
237
+
238
+ Args:
239
+ config (`InternConfig`):
240
+ The corresponding vision configuration for the `InternEncoder`.
241
+ """
242
+
243
+ def __init__(self, config: InternVisionConfig):
244
+ super().__init__()
245
+ self.config = config
246
+ # stochastic depth decay rule
247
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
248
+ self.layers = nn.ModuleList([
249
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
250
+ self.gradient_checkpointing = True
251
+
252
+ def forward(
253
+ self,
254
+ inputs_embeds,
255
+ output_hidden_states: Optional[bool] = None,
256
+ return_dict: Optional[bool] = None,
257
+ ) -> Union[Tuple, BaseModelOutput]:
258
+ r"""
259
+ Args:
260
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
261
+ Embedded representation of the inputs. Should be float, not int tokens.
262
+ output_hidden_states (`bool`, *optional*):
263
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
264
+ for more detail.
265
+ return_dict (`bool`, *optional*):
266
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
267
+ """
268
+ output_hidden_states = (
269
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
270
+ )
271
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
272
+
273
+ encoder_states = () if output_hidden_states else None
274
+ hidden_states = inputs_embeds
275
+
276
+ for idx, encoder_layer in enumerate(self.layers):
277
+ if output_hidden_states:
278
+ encoder_states = encoder_states + (hidden_states,)
279
+ if self.gradient_checkpointing and self.training:
280
+ layer_outputs = torch.utils.checkpoint.checkpoint(
281
+ encoder_layer,
282
+ hidden_states)
283
+ else:
284
+ layer_outputs = encoder_layer(
285
+ hidden_states,
286
+ )
287
+ hidden_states = layer_outputs
288
+ #import pdb
289
+ #pdb.set_trace()
290
+
291
+ if output_hidden_states:
292
+ encoder_states = encoder_states + (hidden_states,)
293
+
294
+ if not return_dict:
295
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
296
+ return BaseModelOutput(
297
+ last_hidden_state=hidden_states, hidden_states=encoder_states
298
+ )
299
+
300
+
301
+ class InternVisionModel(PreTrainedModel):
302
+ main_input_name = 'pixel_values'
303
+ config_class = InternVisionConfig
304
+ _no_split_modules = ['InternVisionEncoderLayer']
305
+
306
+ def __init__(self, config: InternVisionConfig):
307
+ super().__init__(config)
308
+ self.config = config
309
+
310
+ self.embeddings = InternVisionEmbeddings(config)
311
+ self.encoder = InternVisionEncoder(config)
312
+
313
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
314
+ pos_emb = self.embeddings.position_embedding
315
+ _, num_positions, embed_dim = pos_emb.shape
316
+ cls_emb = pos_emb[:, :1, :]
317
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
318
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
319
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
320
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
321
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
322
+ self.embeddings.image_size = new_size
323
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
324
+
325
+ def get_input_embeddings(self):
326
+ return self.embeddings
327
+
328
+ def forward(
329
+ self,
330
+ pixel_values: Optional[torch.FloatTensor] = None,
331
+ output_hidden_states: Optional[bool] = None,
332
+ return_dict: Optional[bool] = None,
333
+ pixel_embeds: Optional[torch.FloatTensor] = None,
334
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
335
+ output_hidden_states = (
336
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
337
+ )
338
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
339
+
340
+ if pixel_values is None and pixel_embeds is None:
341
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
342
+
343
+ if pixel_embeds is not None:
344
+ hidden_states = pixel_embeds
345
+ else:
346
+ if len(pixel_values.shape) == 4:
347
+ hidden_states = self.embeddings(pixel_values)
348
+ else:
349
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
350
+ encoder_outputs = self.encoder(
351
+ inputs_embeds=hidden_states,
352
+ output_hidden_states=output_hidden_states,
353
+ return_dict=return_dict,
354
+ )
355
+ last_hidden_state = encoder_outputs.last_hidden_state
356
+ pooled_output = last_hidden_state[:, 0, :]
357
+
358
+ if not return_dict:
359
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
360
+
361
+ return BaseModelOutputWithPooling(
362
+ last_hidden_state=last_hidden_state,
363
+ pooler_output=pooled_output,
364
+ hidden_states=encoder_outputs.hidden_states,
365
+ attentions=encoder_outputs.attentions,
366
+ )
modeling_yuanlm2.py ADDED
@@ -0,0 +1,1624 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Yuan model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+ import torch.nn.functional as F
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import einsum, nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+ from transformers.activations import ACT2FN
29
+ from transformers.generation import GenerationMixin
30
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
31
+ from transformers.modeling_utils import PreTrainedModel
32
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
33
+ from .configuration_yuan import YuanConfig
34
+ from einops import rearrange
35
+ # from flash_attn import flash_attn_varlen_func as flash_attn_unpadded_func
36
+ #from apex.normalization import MixedFusedRMSNorm as RMSNorm
37
+ #from flash_attn import flash_attn_func
38
+ #from transformer_engine.pytorch import RMSNorm
39
+ import pdb
40
+ import copy
41
+ try:
42
+ import grouped_gemm as gg
43
+ except ImportError:
44
+ gg = None
45
+ try:
46
+ from flash_attn import flash_attn_varlen_func as flash_attn_unpadded_func
47
+ from flash_attn import flash_attn_func
48
+ except ImportError:
49
+ flash_attn_unpadded_func = None
50
+
51
+
52
+ logger = logging.get_logger(__name__)
53
+
54
+ _CONFIG_FOR_DOC = "YuanConfig"
55
+
56
+ class RMSNorm(torch.nn.Module):
57
+ def __init__(self, hidden_size, eps=1e-6):
58
+ super().__init__()
59
+ self.weight = torch.nn.Parameter(torch.ones(hidden_size))
60
+ self.variance_epsilon = eps
61
+
62
+ def forward(self, hidden_states):
63
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
64
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
65
+
66
+ # convert into half-precision if necessary
67
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
68
+ hidden_states = hidden_states.to(self.weight.dtype)
69
+
70
+ return self.weight * hidden_states
71
+
72
+
73
+ """
74
+ class YuanRotaryEmbedding(nn.Module):
75
+ def __init__(self, dim, base=10000, dtype=torch.float32, device=None, scaling_factor=1.0, rope_type='default'):
76
+ super().__init__()
77
+ inv_freq = (1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))).to(dtype)#.to('cuda:1')
78
+ self.register_buffer('inv_freq', inv_freq)
79
+
80
+ def forward(self, max_seq_len, offset=0):
81
+ self.inv_freq = self.inv_freq.to(torch.float32)
82
+ seq = torch.arange(max_seq_len, device=self.inv_freq.device) + offset
83
+ freqs = einsum('i , j -> i j', seq.type_as(self.inv_freq), self.inv_freq)
84
+ # first part even vector components, second part odd vector components,
85
+ # 2 * dim in dimension size
86
+ emb = torch.cat((freqs, freqs), dim=-1)
87
+ # emb [seq_length, .., dim]
88
+ return emb[:, None, None, :]"""
89
+
90
+ class YuanRotaryEmbedding(nn.Module):
91
+ def __init__(self, dim, base=10000, dtype=torch.float32, rotary_interleaved=False, seq_len_interpolation_factor=None):
92
+ super().__init__()
93
+ self.base = base
94
+ self.dim = dim
95
+ self.rotary_interleaved = rotary_interleaved
96
+ self.seq_len_interpolation_factor = seq_len_interpolation_factor
97
+
98
+ def get_rotary_seq_len(
99
+ self,
100
+ inference_param=None,
101
+ transformer_input: torch.Tensor=None,
102
+ transformer_config=None,
103
+ ):
104
+ if inference_param is not None:
105
+ rotary_seq_len = inference_param.max_sequence_length
106
+ else:
107
+ rotary_seq_len = transformer_input.size[0]
108
+ if transformer_config.sequence_parallel:
109
+ rotary_seq_len *= transformer_config.tensor_model_parallel_size
110
+
111
+ return rotary_seq_len
112
+
113
+ def forward(self, max_seq_len, offset=0):
114
+
115
+ """Forward pass of RoPE embedding.
116
+
117
+ Args:
118
+ max_seq_len (int): Maximum size of sequence
119
+ offset (int, optional): _description_. Defaults to 0.
120
+
121
+ Returns:
122
+ Tensor: Embeddings after applying RoPE.
123
+ """
124
+ inv_freq = (1.0 / ( self.base**(torch.arange(0, self.dim, 2, dtype=torch.float32, device=torch.cuda.current_device()) / self.dim))).to(torch.float32)
125
+
126
+ #max_seq_len_int = max_seq_len.item() if max_seq_len.numel() == 1 else max_seq_len.max().item()
127
+ seq = (
128
+ torch.arange(max_seq_len, device=inv_freq.device, dtype=inv_freq.dtype)
129
+ + offset
130
+ )
131
+
132
+ if self.seq_len_interpolation_factor is not None:
133
+ seq *= 1 / self.seq_len_interpolation_factor
134
+
135
+ freqs = torch.outer(seq, inv_freq)
136
+ # first part even vector components, second part odd vector components,
137
+ # 2 * dim in dimension size
138
+ if not self.rotary_interleaved:
139
+ emb = torch.cat((freqs, freqs), dim=-1)
140
+ else:
141
+ emb = torch.stack((freqs.view(-1, 1), freqs.view(-1, 1)), dim=-1).view(
142
+ freqs.shape[0], -1
143
+ )
144
+ # emb [seq_length, .., dim]
145
+ emb = emb[:, None, None, :]
146
+ #emb = emb[:, None, :]
147
+ return emb
148
+
149
+
150
+ def _rotate_half(x, rotary_interleaved):
151
+ """huggingface version
152
+ change sign so the last dimension becomes [-odd, +even]
153
+
154
+ x1, x2 = torch.chunk(x, 2, dim=-1)
155
+ return torch.cat((-x2, x1), dim=-1)
156
+ """
157
+ if not rotary_interleaved:
158
+ x1, x2 = torch.chunk(x, 2, dim=-1)
159
+ return torch.cat((-x2, x1), dim=-1)
160
+ else:
161
+ x1 = x[:, :, :, ::2]
162
+ x2 = x[:, :, :, 1::2]
163
+ x_new = torch.stack((-x2, x1), dim=-1)
164
+ return x_new.view(x_new.shape[0], x_new.shape[1], x_new.shape[2], -1)
165
+
166
+ def apply_rotary_pos_emb(t, freqs, position_ids, rotary_interleaved=False):
167
+
168
+ rot_dim = freqs.shape[-1]
169
+ #if position_ids.shape[1] > 1:
170
+ freqs = freqs[position_ids]
171
+ freqs = freqs.view(t.shape[1],freqs.shape[1],freqs.shape[2],freqs.shape[4]).transpose(0,1)
172
+ # ideally t_pass is empty so rotary pos embedding is applied to all tensor t
173
+ t, t_pass = t[..., :rot_dim], t[..., rot_dim:]
174
+
175
+ # first part is cosine component
176
+ # second part is sine component, need to change signs with _rotate_half method
177
+ t_type = t.dtype
178
+ cos_ = torch.cos(freqs).to(t.dtype)
179
+ sin_ = torch.sin(freqs).to(t.dtype)
180
+
181
+ t = (t * cos_) + (_rotate_half(t, rotary_interleaved) * sin_)
182
+ return torch.cat((t, t_pass), dim=-1)
183
+ """huggingface version
184
+ input tensor t is of shape [seq_length, ..., dim]
185
+ rotary positional embeding tensor freqs is of shape [seq_length, ..., dim]
186
+ check https://kexue.fm/archives/8265 for detailed formulas
187
+
188
+ dtype = t.dtype
189
+ rot_dim = freqs.shape[-1]
190
+ t_pass = t[..., rot_dim:]
191
+ if position_ids.shape[1] > 1:
192
+ freqs = freqs[position_ids]
193
+ freqs = freqs.view(t.shape[1],freqs.shape[1],freqs.shape[2],freqs.shape[4]).transpose(0,1)
194
+ # ideally t_pass is empty so rotary pos embedding is applied to all tensor t
195
+ t = t[..., :rot_dim]
196
+ # first part is cosine component
197
+ # second part is sine component, need to change signs with _rotate_half method
198
+ t = (t * freqs.cos()) + (_rotate_half(t) * freqs.sin())
199
+ t = t.to(dtype)
200
+ """
201
+
202
+ return torch.cat((t, t_pass), dim=-1)
203
+
204
+ class LocalizedFiltering(torch.nn.Module):
205
+ """
206
+ Mega's Exponential Moving Average layer, largely left unmodified from the original repo with the exception of
207
+ variable names and moving away from the stateful representation of incremental decoding state. See
208
+ "https://arxiv.org/abs/2209.10655" for more details.
209
+ """
210
+
211
+ def __init__(self, hidden_size, lf_conv2d_group, lf_conv2d_num_pad):
212
+ super().__init__()
213
+
214
+ self.embed_dim = hidden_size
215
+ self.lf_conv2d_group = lf_conv2d_group
216
+ self.lf_conv2d_num_pad = lf_conv2d_num_pad
217
+ if self.lf_conv2d_num_pad == 1:
218
+ self.training = True
219
+ self.conv1 = torch.nn.Conv2d(self.embed_dim, self.embed_dim // 2, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group)
220
+ self.conv2 = torch.nn.Conv2d(self.embed_dim // 2, self.embed_dim, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group)
221
+ self.output_layernorm = RMSNorm(self.embed_dim, eps=1e-6)
222
+
223
+ def _train_forward(self, inputs):
224
+ inputs = inputs.transpose(0,1)
225
+ seq_len, bsz, embed_dim = inputs.size()
226
+ if embed_dim != self.embed_dim:
227
+ raise ValueError(
228
+ f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}"
229
+ )
230
+ residual = inputs
231
+
232
+ inputs = inputs.view(seq_len, 1, bsz, embed_dim).permute(2, 3, 0, 1)
233
+ output1 = self.conv1(inputs)
234
+ output1 = output1[:, :, :seq_len, :]
235
+
236
+ output2 = self.conv2(output1)
237
+ output2 = output2[:, :, :seq_len, :].permute(2, 3, 0, 1).contiguous()
238
+ output2 = output2.view(seq_len, bsz, embed_dim)
239
+ assert output2.shape == residual.shape
240
+
241
+ torch.cuda.set_device(output2.device)
242
+ lf_output = self.output_layernorm(output2 + residual)
243
+ lf_output = lf_output.transpose(0,1)
244
+ return lf_output
245
+
246
+ def _inference_forward(self, inputs, before_hidden_states):
247
+
248
+ if before_hidden_states is None:
249
+ residual = inputs
250
+ seq_len, bsz, embed_dim = inputs.size()
251
+
252
+ inputs = inputs.view(seq_len, 1, bsz, embed_dim).permute(2, 3, 0, 1)
253
+
254
+ pad_zero1 = torch.zeros(bsz, embed_dim, 1, 1).to(inputs)
255
+ inputs = torch.cat((pad_zero1, inputs), dim=2).contiguous()
256
+ output1 = self.conv1(inputs)
257
+
258
+ pad_zero2 = torch.zeros(bsz, embed_dim // 2, 1, 1).to(output1)
259
+ output1 = torch.cat((pad_zero2, output1), dim=2).contiguous()
260
+ output2 = self.conv2(output1)
261
+
262
+ output2 = output2.permute(2, 3, 0, 1).contiguous()
263
+
264
+ output2 = output2.view(seq_len, bsz, embed_dim)
265
+
266
+ assert output2.shape == residual.shape
267
+
268
+ lf_output = self.output_layernorm(output2 + residual)
269
+
270
+ else:
271
+ residual = inputs
272
+
273
+ seq_len, bsz, embed_dim = inputs.size()
274
+ seq_len_before, _, _ = before_hidden_states.size()
275
+
276
+ assert seq_len == 1 and seq_len_before == 2
277
+
278
+ inputs = torch.cat((before_hidden_states, inputs), dim=0)
279
+ inputs = inputs.view(3, 1, bsz, embed_dim).permute(2, 3, 0, 1)
280
+
281
+ output1 = self.conv1(inputs)
282
+ output2 = self.conv2(output1)
283
+ output2 = output2.view(1, bsz, embed_dim)
284
+
285
+ assert output2.shape == residual.shape
286
+
287
+ lf_output = self.output_layernorm(output2 + residual)
288
+
289
+ return lf_output
290
+ '''#IEIyuan huggingface version
291
+ if before_hidden_states == None:
292
+ inputs = inputs.transpose(0,1)
293
+ seq_len, bsz, embed_dim = inputs.size()
294
+ if embed_dim != self.embed_dim:
295
+ raise ValueError(
296
+ f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}"
297
+ )
298
+ residual = inputs
299
+ inputs = inputs.view(seq_len, 1, bsz, embed_dim).permute(2, 3, 0, 1)
300
+ inputs = torch.cat((torch.zeros(bsz, embed_dim, 1, 1, dtype=inputs.dtype, device=inputs.device), inputs), dim=2).contiguous()
301
+ output1 = self.conv1(inputs)
302
+
303
+ output1 = torch.cat((torch.zeros(bsz, embed_dim // 2, 1, 1, dtype=inputs.dtype, device=inputs.device), output1), dim=2).contiguous()
304
+ output2 = self.conv2(output1).permute(2, 3, 0, 1).contiguous()
305
+ output2 = output2.view(seq_len, bsz, embed_dim)
306
+ assert output2.shape == residual.shape
307
+ norm_input = (output2 + residual)#.to('cuda:0')
308
+ torch.cuda.set_device(norm_input.device)
309
+ lf_output = self.output_layernorm(norm_input)
310
+ lf_output = lf_output#.to('cuda:1')
311
+ lf_output = lf_output.transpose(0,1)
312
+ return lf_output
313
+ else:
314
+ inputs = inputs.transpose(0,1)
315
+ before_hidden_states = before_hidden_states.transpose(0,1)
316
+ seq_len, bsz, embed_dim = inputs.size()
317
+ if embed_dim != self.embed_dim:
318
+ raise ValueError(
319
+ f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}"
320
+ )
321
+ residual = inputs
322
+ inputs = inputs.view(seq_len, 1, bsz, embed_dim).permute(2, 3, 0, 1)
323
+ before_hidden_states = before_hidden_states.view(2, 1, bsz, embed_dim).permute(2, 3, 0, 1)
324
+ inputs = torch.cat((before_hidden_states, inputs), dim=2).contiguous()
325
+ output1 = self.conv1(inputs)
326
+ output2 = self.conv2(output1).permute(2, 3, 0, 1).contiguous()
327
+ output2 = output2.view(seq_len, bsz, embed_dim)
328
+ assert output2.shape == residual.shape
329
+
330
+ norm_input = (output2 + residual)#.to('cuda:0')
331
+ torch.cuda.set_device(norm_input.device)
332
+ lf_output = self.output_layernorm(norm_input)
333
+ lf_output = lf_output#.to('cuda:1')
334
+ lf_output = lf_output.transpose(0,1)
335
+ return lf_output
336
+ '''
337
+
338
+
339
+ def forward(
340
+ self,
341
+ inputs,
342
+ before_hidden_states = None,
343
+ ) -> torch.Tensor:
344
+ # assert self.lf_conv2d_num_pad == 1
345
+ if self.training:
346
+ lf_output = self._train_forward(inputs)
347
+ else:
348
+ lf_output = self._inference_forward(inputs, before_hidden_states)
349
+
350
+ return lf_output
351
+
352
+
353
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
354
+ def _make_causal_mask(
355
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
356
+ ):
357
+ """
358
+ Make causal mask used for bi-directional self-attention.
359
+ """
360
+ bsz, tgt_len = input_ids_shape
361
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
362
+ mask_cond = torch.arange(mask.size(-1), device=device)
363
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
364
+ mask = mask.to(dtype)
365
+
366
+ if past_key_values_length > 0:
367
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
368
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
369
+
370
+
371
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
372
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
373
+ """
374
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
375
+ """
376
+ bsz, src_len = mask.size()
377
+ tgt_len = tgt_len if tgt_len is not None else src_len
378
+
379
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
380
+
381
+ inverted_mask = 1.0 - expanded_mask
382
+
383
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
384
+
385
+
386
+ class YuanRMSNorm(nn.Module):
387
+ def __init__(self, hidden_size, eps=1e-6):
388
+ """
389
+ YuanRMSNorm is equivalent to LlamaRMSNorm
390
+ """
391
+ super().__init__()
392
+ self.weight = nn.Parameter(torch.ones(hidden_size))
393
+ self.variance_epsilon = eps
394
+
395
+ def forward(self, hidden_states):
396
+ input_dtype = hidden_states.dtype
397
+ hidden_states = hidden_states.to(torch.float32)
398
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
399
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
400
+ return self.weight * hidden_states.to(input_dtype)
401
+
402
+ # flash attn
403
+ class FlashSelfAttention(torch.nn.Module):
404
+ """Implement the scaled dot product attention with softmax.
405
+ Arguments
406
+ ---------
407
+ softmax_scale: The temperature to use for the softmax attention.
408
+ (default: 1/sqrt(d_keys) where d_keys is computed at
409
+ runtime)
410
+ attention_dropout: The dropout rate to apply to the attention
411
+ (default: 0.0)
412
+ """
413
+ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
414
+ device=None, dtype=None):
415
+ super().__init__()
416
+ assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
417
+ 'e.g., with pip install flash-attn')
418
+ assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
419
+ self.causal = causal
420
+ self.softmax_scale = softmax_scale
421
+ self.dropout_p = attention_dropout
422
+
423
+ def forward(self, q, k, v):
424
+ """Implements the multihead softmax attention.
425
+ Arguments
426
+ ---------
427
+ q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
428
+ """
429
+
430
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
431
+ assert all((i.is_cuda for i in (q,k,v)))
432
+
433
+ batch_size, seqlen_q = q.shape[1], q.shape[0]
434
+ seqlen_k = k.shape[0]
435
+ q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
436
+ cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q.device)
437
+ if self.training:
438
+ # during training q,k,v always have same seqlen
439
+ assert seqlen_k == seqlen_q
440
+ is_causal = self.causal
441
+ cu_seqlens_k = cu_seqlens_q
442
+ dropout_p = self.dropout_p
443
+ else:
444
+ # turn off FA causal mask after first inference autoregressive iteration
445
+ # only on first autoregressive step q,k,v have same seqlen
446
+ is_causal = seqlen_q == seqlen_k
447
+ cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=q.device)
448
+ #cu_seqlens_q = [cu_seqlens_q[0], cu_seqlens_q[-1]]
449
+ #cu_seqlens_k = [cu_seqlens_k[0], cu_seqlens_k[-1]]
450
+ dropout_p = 0
451
+
452
+ output = flash_attn_unpadded_func(q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, dropout_p, softmax_scale=self.softmax_scale, causal=is_causal)
453
+
454
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
455
+ return output
456
+
457
+ class ParallelAttention_router(nn.Module):
458
+ def __init__(self, config):
459
+ super(ParallelAttention_router, self).__init__()
460
+ layer_number=0
461
+ self.layer_number = max(1, layer_number)
462
+
463
+ self.hidden_size = config.hidden_size
464
+ self.projection_size = config.moe_config['moe_num_experts']
465
+
466
+ self.num_attention_router_heads = config.moe_config['num_attention_router_heads']
467
+ self.hidden_size_per_attention_head = config.max_position_embeddings // self.num_attention_router_heads
468
+ self.query_key_value = nn.Linear(self.hidden_size, self.projection_size*3, bias=False)
469
+
470
+ def forward(self, hidden_states, attention_mask=None, enc_position_ids=None,
471
+ encoder_output=None, inference_params=None,
472
+ rotary_pos_emb=None):
473
+ is_first_step = False
474
+ before_hidden_states = None
475
+
476
+ #mixed_x_layer = torch.matmul(hidden_states, self.query_key_value)
477
+ mixed_x_layer = self.query_key_value(hidden_states)
478
+ (query_layer, key_layer, value_layer) = torch.split(mixed_x_layer, self.projection_size, -1)
479
+ b, s, z = query_layer.shape
480
+
481
+ # use fp32 router
482
+ query_layer = query_layer.float().view(b,s,z,1)
483
+ key_layer = key_layer.float().view(b,s,z,1)
484
+ value_layer = value_layer.float().view(b,s,z,1)
485
+
486
+ attn_weights = torch.matmul(query_layer, key_layer.transpose(2, 3))
487
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
488
+ attn_output = torch.matmul(attn_weights, value_layer)
489
+ router_output = attn_output.view(-1, z)
490
+ return router_output
491
+
492
+ class YuanExpertMLP(nn.Module):
493
+ def __init__(self, config):
494
+ super(YuanExpertMLP, self).__init__()
495
+ self.gated_linear_unit = config.moe_config['gated_linear_unit']
496
+ #self.ffn_hidden_size = config.moe_config['ffn_hidden_size']
497
+ self.ffn_hidden_size = config.ffn_hidden_size
498
+
499
+
500
+ if self.gated_linear_unit:
501
+ self.w1 = nn.Linear(config.hidden_size, self.ffn_hidden_size*2, bias=False)
502
+
503
+ else:
504
+ self.w1 = nn.Linear(config.hidden_size, self.ffn_hidden_size, bias=False)
505
+
506
+ self.act_fn = ACT2FN[config.hidden_act]
507
+ self.w2 = nn.Linear(self.ffn_hidden_size, config.hidden_size, bias=False)
508
+
509
+
510
+ def forward(self, x):
511
+ x = self.w1(x)
512
+ if self.gated_linear_unit:
513
+ x = torch.chunk(x, 2, dim=-1)
514
+ x = self.act_fn(x[0]) * x[1]
515
+ else:
516
+ x = self.act_fn(x)
517
+ x = self.w2(x)
518
+ return x
519
+
520
+
521
+
522
+ class YuanMLP(nn.Module):
523
+ def __init__(
524
+ self,
525
+ hidden_size: int,
526
+ intermediate_size: int,
527
+ hidden_act: str
528
+ ):
529
+ super().__init__()
530
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
531
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
532
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
533
+ self.act_fn = ACT2FN[hidden_act]
534
+
535
+ def forward(self, x):
536
+ return self.down_proj(self.gate_proj(x) * self.act_fn(self.up_proj(x)))
537
+
538
+
539
+ class YuanAttention(nn.Module):
540
+ """Localized Filtering-based Attention 'YUAN 2.0: A Large Language Model with Localized Filtering-based Attention' paper"""
541
+
542
+ def __init__(self, config: YuanConfig):
543
+ super().__init__()
544
+ self.config = config
545
+ self.hidden_size = config.hidden_size
546
+ self.num_heads = config.num_attention_heads
547
+ self.lf_conv2d_group = config.lf_conv2d_group
548
+ self.lf_conv2d_num_pad = config.lf_conv2d_num_pad
549
+
550
+ try:
551
+ self.attention_projection_size = config.attention_projection_size
552
+ except:
553
+ self.attention_projection_size = None
554
+
555
+ if self.attention_projection_size is None:
556
+ self.head_dim = self.hidden_size // self.num_heads
557
+ else:
558
+ self.head_dim = self.attention_projection_size // self.num_heads
559
+
560
+ self.max_position_embeddings = config.max_position_embeddings
561
+ self.causal_mask = config.causal_mask
562
+ self.attn_mask_type = config.attn_mask_type
563
+ self.softmax_scale = 1.0 / math.sqrt(self.head_dim)
564
+ self.use_flash_attention = config.use_flash_attention
565
+ try:
566
+ self.use_shareqk = config.use_shareqk
567
+ except Exception as e:
568
+ self.use_shareqk=False
569
+ self.dropout = 0.0
570
+ self.attention_projection_size = config.attention_projection_size
571
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
572
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
573
+
574
+ if self.use_shareqk:
575
+ self.qk_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
576
+ self.qk_weight = nn.Parameter(torch.Tensor(2, self.hidden_size))
577
+ self.qk_bias = nn.Parameter(torch.Tensor(2, self.hidden_size))
578
+ else:
579
+ self.lf_gate = LocalizedFiltering(self.hidden_size, self.lf_conv2d_group, self.lf_conv2d_num_pad)
580
+ self.get_query_key = nn.Linear(self.hidden_size, 2 * self.attention_projection_size, bias=False)
581
+ self.core_attention = FlashSelfAttention(causal=True, attention_dropout=config.attn_dropout, softmax_scale=self.softmax_scale)
582
+ #self.core_attention_flash = DotProductAttention(num_attention_heads=self.num_heads,
583
+ # kv_channels=self.head_dim)
584
+
585
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
586
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
587
+
588
+ def forward(
589
+ self,
590
+ hidden_states: torch.Tensor,
591
+ attention_mask: Optional[torch.Tensor] = None,
592
+ position_ids: Optional[torch.LongTensor] = None,
593
+ position_ids_k: Optional[torch.LongTensor] = None,
594
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
595
+ rotary_pos_emb: Optional[Tuple[torch.Tensor]] = None,
596
+ output_attentions: bool = False,
597
+ use_cache: bool = False,
598
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
599
+ q_len, bsz, _ = hidden_states.size()
600
+ hidden_states = hidden_states#.to('cuda:1')
601
+ is_first_step = False
602
+ if use_cache:
603
+ if past_key_value is None:
604
+ before_hidden_states = None
605
+ is_first_step = True
606
+ if q_len > 1:
607
+ inference_hidden_states_memory = hidden_states[-2:, :, :]
608
+ else:
609
+ inference_hidden_states_memory = torch.cat((torch.zeros_like(hidden_states), hidden_states), dim=0)
610
+ else:
611
+ before_hidden_states = past_key_value[2]
612
+ inference_hidden_states_memory = torch.cat((before_hidden_states[-1:, :, :], hidden_states), dim=0)
613
+ value_states = self.v_proj(hidden_states).view(q_len, bsz, self.num_heads, self.head_dim)
614
+ if self.use_shareqk:
615
+ qk_states = self.qk_proj(hidden_states).view(q_len, bsz, self.num_heads*self.head_dim)
616
+ query_key = qk_states.unsqueeze(2) * self.qk_weight + self.qk_bias
617
+ query_states, key_states = torch.unbind(query_key, dim=2)
618
+
619
+ query_states = query_states.view(q_len, bsz, self.num_heads, self.head_dim).transpose(1, 2)
620
+ key_states = key_states.view(q_len, bsz, self.num_heads, self.head_dim).transpose(1, 2)
621
+ else:
622
+ hidden_states = self.lf_gate(hidden_states, before_hidden_states)
623
+ mixed_qk_layer = self.get_query_key(hidden_states)
624
+ #mixed_qk_layer = torch.matmul(hidden_states, qk_tensor)
625
+ new_tensor_shape = mixed_qk_layer.size()[:-1] + (self.num_heads, 2 * self.head_dim)
626
+ mixed_qk_layer = mixed_qk_layer.view(*new_tensor_shape)
627
+ (query_states, key_states) = torch.split(mixed_qk_layer, self.head_dim, dim=-1)
628
+
629
+
630
+ kv_seq_len = key_states.shape[1]
631
+ if past_key_value is not None:
632
+ kv_seq_len += past_key_value[0].shape[1]
633
+
634
+ # duplicate the pos_emb for self attention
635
+ if rotary_pos_emb is not None:
636
+ if position_ids.shape[1] == 1:
637
+ q_seq_start = position_ids[0,-1]
638
+ #seq_start = past_key_value[0].shape[0]
639
+ q_seq_end = q_seq_start + 1
640
+ k_seq_end = q_seq_end
641
+ else:
642
+ q_seq_start = 0
643
+ q_seq_end = q_seq_start+key_states.shape[0]
644
+ k_seq_end = q_seq_end
645
+
646
+ rotary_pos_shape = rotary_pos_emb.shape
647
+ if isinstance(rotary_pos_emb, tuple):
648
+ rotary_pos_emb = rotary_pos_emb
649
+ else:
650
+ rotary_pos_emb = ((rotary_pos_emb,) * 2)
651
+ q_pos_emb, k_pos_emb = rotary_pos_emb
652
+ if past_key_value is not None:
653
+ # reuse k, v, self_attention
654
+ key_states = torch.cat([past_key_value[0], key_states], dim=0)
655
+ value_states = torch.cat([past_key_value[1], value_states], dim=0)
656
+ past_key_value = (key_states, value_states, inference_hidden_states_memory) if use_cache else None
657
+ #query_states = apply_rotary_pos_emb(query_states.permute(1, 0, 2, 3), q_pos_emb, position_ids)
658
+ #key_states = apply_rotary_pos_emb(key_states.permute(1, 0, 2, 3), k_pos_emb, position_ids)
659
+ query_states = apply_rotary_pos_emb(query_states, q_pos_emb, position_ids)
660
+ key_states = apply_rotary_pos_emb(key_states, k_pos_emb, position_ids_k)
661
+
662
+ attn_weights = None
663
+ #query_states = query_states.transpose(0,1)
664
+ #key_states = key_states.transpose(0,1)
665
+ #value_states = value_states
666
+ attn_output = self.core_attention(query_states, key_states, value_states)
667
+ #attn_output = self.core_attention(query_states, key_states, value_states, attention_mask)
668
+ q_len, bsz, _, _ = attn_output.shape
669
+ attn_output = attn_output.reshape(q_len, bsz, -1)
670
+
671
+ attn_output = self.o_proj(attn_output)
672
+
673
+ return attn_output, attn_weights, past_key_value
674
+
675
+ class MoEDroplessTokenDispatcher:
676
+ def __init__(self, num_experts: int, config: YuanConfig) -> None:
677
+ self.num_experts = num_experts
678
+ assert self.num_experts > 0, "Expected at least one expert"
679
+ self.router_topk = config.moe_config['moe_top_k']
680
+
681
+ def token_permutation(
682
+ self, hidden_states: torch.Tensor, max_prob: torch.Tensor, max_ind: torch.Tensor
683
+ ):
684
+ self.hidden_shape = hidden_states.shape
685
+ hidden_states = hidden_states.view(-1, self.hidden_shape[-1])
686
+
687
+ if self.router_topk > 1:
688
+ global_local_map = torch.ones_like(max_ind).bool()
689
+ local_indices = max_ind.masked_select(global_local_map)
690
+ local_probs = max_prob.masked_select(global_local_map)
691
+ global_local_map = global_local_map.nonzero()[:, 0]
692
+ global_local_map = global_local_map.view(-1, 1).expand(-1, hidden_states.shape[-1])
693
+ local_hidden_states = torch.gather(hidden_states, 0, global_local_map)
694
+
695
+ indices = torch.argsort(local_indices, dim=0)
696
+ tokens_per_expert = torch.histc(
697
+ local_indices,
698
+ bins=self.num_experts,
699
+ min=0,
700
+ max=self.num_experts - 1,
701
+ )
702
+ tokens_per_expert = tokens_per_expert.cpu().to(torch.long)
703
+
704
+ indices = indices.view(-1, 1).expand(-1, hidden_states.shape[-1])
705
+ permuted_local_hidden_states = torch.gather(local_hidden_states, 0, indices)
706
+ return (permuted_local_hidden_states, tokens_per_expert, local_probs, indices, global_local_map)
707
+
708
+ def token_unpermutation(
709
+ self,
710
+ hidden_states: torch.Tensor,
711
+ scores: torch.Tensor,
712
+ indices: torch.Tensor,
713
+ global_local_map: torch.Tensor = None,
714
+ ):
715
+ scores = scores.to(dtype=hidden_states.dtype)
716
+ unpermuted_local_hidden = torch.zeros_like(hidden_states)
717
+ assert indices.shape == hidden_states.shape, f'{indices.shape}, {hidden_states.shape}'
718
+ unpermuted_local_hidden = unpermuted_local_hidden.scatter(0, indices, hidden_states)
719
+
720
+ if self.router_topk > 1:
721
+ unpermuted_local_hidden = unpermuted_local_hidden * scores.view(-1, 1)
722
+ unpermuted_local_bias = None
723
+ output_total = unpermuted_local_hidden
724
+ output_bias_total = unpermuted_local_bias
725
+
726
+ if self.router_topk > 1:
727
+ global_num_tokens = self.hidden_shape[0] * self.hidden_shape[1]
728
+ global_hidden_shape = [global_num_tokens, hidden_states.shape[-1]]
729
+ unpermuted_global_hidden = torch.zeros(
730
+ global_hidden_shape,
731
+ dtype=hidden_states.dtype,
732
+ device=hidden_states.device,
733
+ )
734
+ output_total = unpermuted_global_hidden.scatter_add(
735
+ 0, global_local_map, unpermuted_local_hidden
736
+ )
737
+
738
+ output_total = output_total.view(self.hidden_shape)
739
+
740
+ return output_total
741
+
742
+ class GroupedMLP(nn.Module):
743
+ """An efficient implementation of the Experts layer using CUTLASS GroupedGEMM.
744
+
745
+ This class is designed to execute multiple experts in parallel, thereby maximizing computational efficiency.
746
+ """
747
+
748
+ def __init__(self, num_experts: int, config: YuanConfig):
749
+ super().__init__()
750
+ self.num_experts = num_experts
751
+ self.config = config
752
+
753
+ def glu(x):
754
+ x = torch.chunk(x, 2, dim=-1)
755
+ return torch.nn.functional.silu(x[0]) * x[1]
756
+
757
+ self.activation_func = glu
758
+ #self.ffn_hidden_size = config.moe_config['ffn_hidden_size']
759
+ self.ffn_hidden_size = config.ffn_hidden_size
760
+ fc1_output_size_per_partition = self.ffn_hidden_size * 2
761
+ fc2_input_size = self.ffn_hidden_size
762
+
763
+ self.w1 = nn.ModuleList([nn.Linear(self.config.hidden_size, self.ffn_hidden_size * 2, bias=False) for _ in range(num_experts)])
764
+ self.w2 = nn.ModuleList([nn.Linear(self.ffn_hidden_size, self.config.hidden_size, bias=False) for _ in range(num_experts)])
765
+ def forward(self, permuted_hidden_states, tokens_per_expert):
766
+ torch.cuda.set_device(permuted_hidden_states.device)
767
+ permuted_hidden_states = permuted_hidden_states#.to('cuda:0')
768
+ #fc1_output = gg.ops.gmm(permuted_hidden_states, self.weight1, tokens_per_expert.cpu(), trans_b=False)
769
+
770
+ #intermediate_parallel = self.activation_func(fc1_output)
771
+ #fc2_output = gg.ops.gmm(intermediate_parallel, self.weight2, tokens_per_expert.cpu(), trans_b=False)
772
+
773
+ fc2_outputs = []
774
+ start_idx = 0
775
+ for i in range(self.num_experts):
776
+ if tokens_per_expert[i] == 0:
777
+ continue
778
+ end_idx = start_idx + tokens_per_expert[i]
779
+ #fc1_output = torch.matmul(permuted_hidden_states[start_idx:end_idx], self.w1[i])
780
+ # Use custom attributes for each expert's Linear layers
781
+
782
+ fc1_output = self.w1[i](permuted_hidden_states[start_idx:end_idx])
783
+ #print("shape1:", self.w1[i].shape, "shape2:", permuted_hidden_states[start_idx:end_idx].shape)
784
+ intermediate_parallel = self.activation_func(fc1_output)
785
+ #fc2_output = torch.matmul(intermediate_parallel, self.w2[i])
786
+ fc2_output = self.w2[i](intermediate_parallel)
787
+ fc2_outputs.append(fc2_output)
788
+ start_idx = end_idx
789
+ fc2_output = torch.cat(fc2_outputs, dim=0)
790
+ return fc2_output#.to('cuda:1')
791
+
792
+ class YuanMoeLayer(nn.Module):
793
+ def __init__(self, config:YuanConfig):
794
+ super().__init__()
795
+ self.config = config
796
+ self.num_experts = config.moe_config['moe_num_experts']
797
+ self.top_k = config.moe_config['moe_top_k']
798
+ self.norm_topk_prob = config.moe_config['norm_topk_prob']
799
+ self.hidden_size = config.hidden_size
800
+
801
+ expert_indices_offset = (0)
802
+
803
+ #self.gate = ParallelAttention_router(config)
804
+ self.router = ParallelAttention_router(config)
805
+ self.token_dispatcher = MoEDroplessTokenDispatcher(self.num_experts, config=self.config)
806
+ self.experts = GroupedMLP(self.num_experts, self.config)
807
+
808
+ def routing(self, logits: torch.Tensor) -> torch.Tensor:
809
+ top_logits, indices = torch.topk(logits, k=self.top_k, dim=1)
810
+ scores = torch.softmax(top_logits, dim=-1, dtype=torch.float32).type_as(logits)
811
+ return scores, indices
812
+
813
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
814
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
815
+ #logits = self.gate(hidden_states)
816
+ logits = self.router(hidden_states)
817
+ scores, indices = self.routing(logits)
818
+ scores = scores.to(hidden_states.dtype)
819
+ (dispatched_input, tokens_per_expert, scores, indices, global_local_map, ) = self.token_dispatcher.token_permutation(hidden_states, scores, indices)
820
+ expert_output = self.experts(dispatched_input, tokens_per_expert)
821
+ output = self.token_dispatcher.token_unpermutation(expert_output, scores, indices, global_local_map)
822
+ return output
823
+
824
+ class YuanDecoderLayer(nn.Module):
825
+ def __init__(self, config: YuanConfig, num_layer):
826
+ super().__init__()
827
+ self.hidden_size = config.hidden_size
828
+ self.self_attn = YuanAttention(config=config)
829
+ self.num_layer = num_layer
830
+
831
+ if config.moe_config['moe_num_experts'] > 0:
832
+ self.mlp = YuanMoeLayer(config)
833
+ else:
834
+ self.mlp = YuanMLP(
835
+ hidden_size=self.hidden_size,
836
+ intermediate_size=config.intermediate_size,
837
+ hidden_act=config.hidden_act,
838
+ )
839
+
840
+
841
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
842
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
843
+
844
+ def forward(
845
+ self,
846
+ hidden_states: torch.Tensor,
847
+ attention_mask: Optional[torch.Tensor] = None,
848
+ position_ids: Optional[torch.LongTensor] = None,
849
+ position_ids_k: Optional[torch.LongTensor] = None,
850
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
851
+ rotary_pos_emb: Optional[Tuple[torch.Tensor]] = None,
852
+ output_attentions: Optional[bool] = False,
853
+ use_cache: Optional[bool] = False,
854
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
855
+ """
856
+ Args:
857
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
858
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
859
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
860
+ output_attentions (`bool`, *optional*):
861
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
862
+ returned tensors for more detail.
863
+ use_cache (`bool`, *optional*):
864
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
865
+ (see `past_key_values`).
866
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
867
+ """
868
+ residual = hidden_states#.to('cuda:1')
869
+ torch.cuda.set_device(hidden_states.device)
870
+ hidden_states = self.input_layernorm(hidden_states) #.to('cuda:0')).to('cuda:1')
871
+ # Self Attention
872
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
873
+ hidden_states=hidden_states,
874
+ attention_mask=attention_mask,
875
+ position_ids=position_ids,
876
+ position_ids_k=position_ids_k,
877
+ past_key_value=past_key_value,
878
+ rotary_pos_emb=rotary_pos_emb,
879
+ output_attentions=output_attentions,
880
+ use_cache=use_cache,
881
+ )
882
+ hidden_states = residual + hidden_states.permute(1, 0, 2)
883
+ # Fully Connected
884
+ residual = hidden_states#.to('cuda:1')
885
+ torch.cuda.set_device(hidden_states.device)
886
+ hidden_states = self.post_attention_layernorm(hidden_states) #.to('cuda:0')).to('cuda:1')
887
+ hidden_states = self.mlp(hidden_states)# .to('cuda:1')
888
+ hidden_states = residual + hidden_states
889
+ outputs = (hidden_states,)
890
+
891
+ if output_attentions:
892
+ outputs += (self_attn_weights,)
893
+
894
+ if use_cache:
895
+ outputs += (present_key_value,)
896
+
897
+ return outputs
898
+
899
+
900
+ YUAN_START_DOCSTRING = r"""
901
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
902
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
903
+ etc.)
904
+
905
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
906
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
907
+ and behavior.
908
+
909
+ Parameters:
910
+ config ([`YuanConfig`]):
911
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
912
+ load the weights associated with the model, only the configuration. Check out the
913
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
914
+ """
915
+
916
+
917
+ @add_start_docstrings(
918
+ "The bare Yuan Model outputting raw hidden-states without any specific head on top.",
919
+ YUAN_START_DOCSTRING,
920
+ )
921
+ class YuanPreTrainedModel(PreTrainedModel):
922
+ config_class = YuanConfig
923
+ base_model_prefix = "model"
924
+ supports_gradient_checkpointing = True
925
+ _no_split_modules = ["YuanDecoderLayer"]
926
+ _skip_keys_device_placement = "past_key_values"
927
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
928
+
929
+ def _init_weights(self, module):
930
+ std = self.config.initializer_range
931
+ if isinstance(module, nn.Linear):
932
+ module.weight.data.normal_(mean=0.0, std=std)
933
+ if module.bias is not None:
934
+ module.bias.data.zero_()
935
+ elif isinstance(module, nn.Embedding):
936
+ module.weight.data.normal_(mean=0.0, std=std)
937
+ if module.padding_idx is not None:
938
+ module.weight.data[module.padding_idx].zero_()
939
+
940
+ def _set_gradient_checkpointing(self, module, value=False):
941
+ if isinstance(module, YuanModel):
942
+ module.gradient_checkpointing = value
943
+
944
+
945
+ YUAN_INPUTS_DOCSTRING = r"""
946
+ Args:
947
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
948
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
949
+ it.
950
+
951
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
952
+ [`PreTrainedTokenizer.__call__`] for details.
953
+
954
+ [What are input IDs?](../glossary#input-ids)
955
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
956
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
957
+
958
+ - 1 for tokens that are **not masked**,
959
+ - 0 for tokens that are **masked**.
960
+
961
+ [What are attention masks?](../glossary#attention-mask)
962
+
963
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
964
+ [`PreTrainedTokenizer.__call__`] for details.
965
+
966
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
967
+ `past_key_values`).
968
+
969
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
970
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
971
+ information on the default strategy.
972
+
973
+ - 1 indicates the head is **not masked**,
974
+ - 0 indicates the head is **masked**.
975
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
976
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
977
+ config.n_positions - 1]`.
978
+
979
+ [What are position IDs?](../glossary#position-ids)
980
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
981
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
982
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
983
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
984
+
985
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
986
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
987
+
988
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
989
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
990
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
991
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
992
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
993
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
994
+ model's internal embedding lookup matrix.
995
+ use_cache (`bool`, *optional*):
996
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
997
+ `past_key_values`).
998
+ output_attentions (`bool`, *optional*):
999
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1000
+ tensors for more detail.
1001
+ output_hidden_states (`bool`, *optional*):
1002
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1003
+ more detail.
1004
+ return_dict (`bool`, *optional*):
1005
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1006
+ """
1007
+
1008
+
1009
+ @add_start_docstrings(
1010
+ "The bare Yuan Model outputting raw hidden-states without any specific head on top.",
1011
+ YUAN_START_DOCSTRING,
1012
+ )
1013
+ class YuanModel(YuanPreTrainedModel):
1014
+ """
1015
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`YuanDecoderLayer`]
1016
+
1017
+ Args:
1018
+ config: YuanConfig
1019
+ """
1020
+
1021
+ def __init__(self, config: YuanConfig):
1022
+ super().__init__(config)
1023
+ self.padding_idx = config.pad_token_id
1024
+ self.vocab_size = config.vocab_size
1025
+
1026
+ #TODO: control it by config
1027
+ self.eod_token = config.eod_token
1028
+ self.reset_attention_mask = config.reset_attention_mask
1029
+ self.reset_position_ids = config.reset_position_ids
1030
+ self.max_position_embeddings = config.max_position_embeddings
1031
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1032
+ self.layers = nn.ModuleList([YuanDecoderLayer(config, i) for i in range(config.num_hidden_layers)])
1033
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1034
+ self.gradient_checkpointing = False
1035
+ # Initialize weights and apply final processing
1036
+ self.post_init()
1037
+
1038
+ self.seq_length = config.max_position_embeddings
1039
+ rotary_dim = config.hidden_size // config.num_attention_heads
1040
+ if config.rotary_percent < 1.0:
1041
+ rotary_dim = int(rotary_dim * config.rotary_percent)
1042
+ self.rotary_pos_emb = YuanRotaryEmbedding(rotary_dim, base=config.rotary_base, dtype=config.torch_dtype)
1043
+
1044
+
1045
+ def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
1046
+ return self.embed_tokens(input_ids)
1047
+
1048
+ def set_input_embeddings(self, value):
1049
+ self.embed_tokens = value
1050
+
1051
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
1052
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
1053
+ # create causal mask
1054
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1055
+ combined_attention_mask = None
1056
+ if input_shape[-1] > 1:
1057
+ combined_attention_mask = _make_causal_mask(
1058
+ input_shape,
1059
+ inputs_embeds.dtype,
1060
+ device=inputs_embeds.device,
1061
+ past_key_values_length=past_key_values_length,
1062
+ )
1063
+
1064
+ if attention_mask is not None:
1065
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1066
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
1067
+ inputs_embeds.device
1068
+ )
1069
+ combined_attention_mask = (
1070
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
1071
+ )
1072
+
1073
+ return combined_attention_mask
1074
+
1075
+ def _prepare_decoder_attention_mask_training(self, input_id, inputs_embeds, eod_token, reset_mask_flag ,reset_attention_mask=True, reset_position_ids=True):
1076
+
1077
+ micro_batch_size, seq_length = input_id.size()
1078
+
1079
+ attention_mask = torch.tril(torch.ones(
1080
+ (micro_batch_size, seq_length, seq_length), device=inputs_embeds.device)).view(
1081
+ micro_batch_size, 1, seq_length, seq_length)
1082
+
1083
+ position_ids = torch.arange(seq_length, dtype=torch.long,
1084
+ device=inputs_embeds.device)
1085
+ position_ids = position_ids.unsqueeze(0).expand_as(input_id)
1086
+
1087
+ if reset_position_ids:
1088
+ position_ids = position_ids.clone()
1089
+
1090
+ if reset_position_ids or reset_attention_mask:
1091
+ # Loop through the batches:
1092
+ for b in range(micro_batch_size):
1093
+
1094
+ # Find indecies where EOD token is.
1095
+ eod_index = position_ids[b, input_id[b] == eod_token]
1096
+
1097
+ # Detach indecies from positions if going to modify positions.
1098
+ if reset_position_ids:
1099
+ eod_index = eod_index.clone()
1100
+ # Loop through EOD indecies:
1101
+ prev_index = 0
1102
+ for j in range(eod_index.size()[0]):
1103
+ i = eod_index[j]
1104
+ # Mask attention loss.
1105
+ if reset_attention_mask:
1106
+ attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
1107
+ # Reset positions.
1108
+ if reset_position_ids:
1109
+ position_ids[b, (i + 1):] -= (i + 1 - prev_index)
1110
+ prev_index = i + 1
1111
+
1112
+ inverted_mask = 1 - attention_mask
1113
+ output_attn_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min)
1114
+ if reset_mask_flag:
1115
+ output_attn_mask = output_attn_mask[:,:,-1:,:]
1116
+ return output_attn_mask, position_ids
1117
+
1118
+ @add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING)
1119
+ def forward(
1120
+ self,
1121
+ input_ids: torch.LongTensor = None,
1122
+ attention_mask: Optional[torch.Tensor] = None,
1123
+ position_ids: Optional[torch.LongTensor] = None,
1124
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1125
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1126
+ use_cache: Optional[bool] = None,
1127
+ output_attentions: Optional[bool] = None,
1128
+ output_hidden_states: Optional[bool] = None,
1129
+ output_router_logits: Optional[bool] = None,
1130
+ return_dict: Optional[bool] = None,
1131
+ ) -> Union[Tuple, BaseModelOutputWithPast, torch.Tensor]:
1132
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1133
+ output_router_logits = (
1134
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1135
+ )
1136
+ output_hidden_states = (
1137
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1138
+ )
1139
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1140
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1141
+ input_ids1 = copy.deepcopy(input_ids)
1142
+ reset_mask_flag = False
1143
+ if past_key_values:
1144
+ input_ids = input_ids
1145
+ input_ids = input_ids[:,-1:]
1146
+ if use_cache:
1147
+ reset_mask_flag = True
1148
+ # retrieve input_ids and inputs_embeds
1149
+ if input_ids is not None and inputs_embeds is not None:
1150
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
1151
+ elif input_ids is not None:
1152
+ input_ids = input_ids
1153
+ batch_size, seq_length = input_ids.shape
1154
+ elif inputs_embeds is not None:
1155
+ inputs_embeds = inputs_embeds.transpose(0,1)
1156
+ batch_size, seq_length, _ = inputs_embeds.shape
1157
+ else:
1158
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1159
+
1160
+ seq_length_with_past = seq_length
1161
+ past_key_values_length = 0
1162
+ if past_key_values is not None:
1163
+ #past_key_values_length = past_key_values[0][0].shape[2]
1164
+ #modify
1165
+ print('0000')
1166
+ past_key_values_length = past_key_values[0][0].shape[0]
1167
+ seq_length_with_past = seq_length_with_past + past_key_values_length
1168
+ else:
1169
+ print('1111')
1170
+
1171
+ # modify to reset position ids
1172
+ if past_key_values is not None:
1173
+ pos_start = position_ids[:,-1]+1
1174
+ pos_end = pos_start+past_key_values[0][0].shape[0]-position_ids.shape[1]+1
1175
+ position_ids_k = torch.arange(pos_start.item(), pos_end.item()).to(position_ids.device)
1176
+ position_ids_k = position_ids_k.unsqueeze(0)
1177
+ position_ids_k = torch.cat((position_ids, position_ids_k), dim=1)
1178
+ position_ids = position_ids[:,-1]+past_key_values[0][0].shape[0]-position_ids.shape[1]+1
1179
+ position_ids = position_ids.unsqueeze(0)
1180
+ else:
1181
+ position_ids_k = position_ids
1182
+
1183
+ if position_ids is None:
1184
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1185
+ position_ids = torch.arange(
1186
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1187
+ )
1188
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1189
+ else:
1190
+ pass
1191
+
1192
+ if inputs_embeds is None:
1193
+ inputs_embeds = self.embed_tokens(input_ids).transpose(0,1)
1194
+
1195
+ if self.training or self.reset_position_ids:
1196
+ attention_mask, _ = self._prepare_decoder_attention_mask_training(input_ids1, inputs_embeds, self.eod_token, reset_mask_flag, self.reset_attention_mask, self.reset_position_ids)
1197
+ else:
1198
+ if attention_mask is None:
1199
+ attention_mask = torch.ones(
1200
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
1201
+ )
1202
+ attention_mask = self._prepare_decoder_attention_mask(
1203
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1204
+ )
1205
+
1206
+ #rotary_pos_emb = self.rotary_pos_emb(self.max_position_embeddings)
1207
+ # Rotary positional embeddings (embedding is None for PP intermediate devices)
1208
+ rotary_pos_emb = None
1209
+ rotary_pos_emb = self.rotary_pos_emb(self.max_position_embeddings)
1210
+
1211
+ hidden_states = inputs_embeds
1212
+ if self.gradient_checkpointing and self.training:
1213
+ if use_cache:
1214
+ logger.warning_once(
1215
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1216
+ )
1217
+ use_cache = False
1218
+
1219
+ # decoder layers
1220
+ all_hidden_states = () if output_hidden_states else None
1221
+ all_self_attns = () if output_attentions else None
1222
+ next_decoder_cache = () if use_cache else None
1223
+ #position_ids = position_ids.cpu()
1224
+ #position_ids_k = position_ids_k.cpu()
1225
+ for idx, decoder_layer in enumerate(self.layers):
1226
+ if output_hidden_states:
1227
+ all_hidden_states += (hidden_states,)
1228
+
1229
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1230
+
1231
+ if self.gradient_checkpointing and self.training:
1232
+ def create_custom_forward(module):
1233
+ def custom_forward(*inputs):
1234
+ # None for past_key_value
1235
+ return module(*inputs, output_attentions, None)
1236
+
1237
+ return custom_forward
1238
+
1239
+ layer_outputs = torch.utils.checkpoint.checkpoint(
1240
+ create_custom_forward(decoder_layer),
1241
+ hidden_states,
1242
+ attention_mask,
1243
+ position_ids,
1244
+ None,
1245
+ )
1246
+ else:
1247
+ layer_outputs = decoder_layer(
1248
+ hidden_states,
1249
+ attention_mask=attention_mask,
1250
+ position_ids=position_ids,
1251
+ position_ids_k=position_ids_k,
1252
+ past_key_value=past_key_value,
1253
+ rotary_pos_emb=rotary_pos_emb,
1254
+ output_attentions=output_attentions,
1255
+ use_cache=use_cache,
1256
+ )
1257
+ hidden_states = layer_outputs[0]
1258
+
1259
+ if use_cache:
1260
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1261
+
1262
+ if output_attentions:
1263
+ all_self_attns += (layer_outputs[1],)
1264
+ hidden_states = hidden_states#.to('cuda:0')
1265
+ #torch.cuda.set_device(hidden_states.device)
1266
+ hidden_states = self.norm(hidden_states)
1267
+ #print(hidden_states)
1268
+ # add hidden states from the last decoder layer
1269
+ if output_hidden_states:
1270
+ all_hidden_states += (hidden_states,)
1271
+ next_cache = next_decoder_cache if use_cache else None
1272
+ if not return_dict:
1273
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1274
+ return BaseModelOutputWithPast(
1275
+ last_hidden_state=hidden_states,
1276
+ past_key_values=next_cache,
1277
+ hidden_states=all_hidden_states,
1278
+ attentions=all_self_attns,
1279
+ )
1280
+
1281
+
1282
+ class YuanForCausalLM(YuanPreTrainedModel, GenerationMixin):
1283
+ def __init__(self, config):
1284
+ super().__init__(config)
1285
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1286
+ self.model = YuanModel(config)
1287
+ #self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1288
+ self.post_init()
1289
+
1290
+ def get_input_embeddings(self):
1291
+ return self.model.embed_tokens
1292
+
1293
+ def set_input_embeddings(self, value):
1294
+ self.model.embed_tokens = value
1295
+
1296
+ def get_output_embeddings(self):
1297
+ return self.lm_head
1298
+
1299
+ def set_output_embeddings(self, new_embeddings):
1300
+ self.lm_head = new_embeddings
1301
+
1302
+ def set_decoder(self, decoder):
1303
+ self.model = decoder
1304
+
1305
+ def get_decoder(self):
1306
+ return self.model
1307
+
1308
+ def get_loss_mask(self, input_ids, labels, eod_token, sep_token):
1309
+ micro_batch_size, seq_length = input_ids.size()
1310
+ loss_mask = torch.ones(input_ids.size(), dtype=torch.float, device=input_ids.device)
1311
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
1312
+ position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
1313
+
1314
+
1315
+ """modify loss_mask to only calculate the loss of the answer (separated with [SEP])"""
1316
+
1317
+ for b in range(micro_batch_size):
1318
+ eod_indexs = position_ids[b, input_ids[b] == eod_token]
1319
+ sep_indexs = position_ids[b, input_ids[b] == sep_token]
1320
+
1321
+ if len(eod_indexs) == 0 or len(sep_indexs) == 0:
1322
+ loss_mask[b] = 1.0
1323
+ else:
1324
+ if eod_indexs[0] > sep_indexs[0]:
1325
+ loss_mask[b, 0:sep_indexs[0]] = 0
1326
+
1327
+ if len(eod_indexs) == len(sep_indexs):
1328
+ for ii, eod_index in enumerate(eod_indexs):
1329
+ start_index = eod_index
1330
+ if ii == (len(sep_indexs) - 1):
1331
+ stop_index = seq_length
1332
+ else:
1333
+ stop_index = sep_indexs[ii + 1]
1334
+ loss_mask[b, start_index:stop_index] = 0.0
1335
+ else:
1336
+ if len(eod_indexs) > len(sep_indexs):
1337
+ loss_mask[b,:] = 1.0
1338
+ else:
1339
+ for ii, eod_index in enumerate(eod_indexs):
1340
+ start_index = eod_index
1341
+ stop_index = sep_indexs[ii + 1]
1342
+
1343
+ loss_mask[b, start_index:stop_index] = 0.0
1344
+
1345
+ elif eod_indexs[0] < sep_indexs[0]:
1346
+
1347
+ if len(eod_indexs) == len(sep_indexs):
1348
+ for ii, eod_index in enumerate(eod_indexs):
1349
+ start_index = eod_index
1350
+ stop_index = sep_indexs[ii]
1351
+ loss_mask[b, start_index:stop_index] = 0.0
1352
+
1353
+ else:
1354
+ if len(eod_indexs) < len(sep_indexs):
1355
+ loss_mask[b,:] = 1.0
1356
+ else:
1357
+ for ii, eod_index in enumerate(eod_indexs):
1358
+ start_index = eod_index
1359
+ if ii >= len(sep_indexs):
1360
+ stop_index = seq_length
1361
+ else:
1362
+ stop_index = sep_indexs[ii]
1363
+ loss_mask[b, start_index:stop_index] = 0.0
1364
+
1365
+ loss_mask[input_ids == eod_token] = 1.0
1366
+ return loss_mask
1367
+ @add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING)
1368
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1369
+ def forward(
1370
+ self,
1371
+ input_ids: torch.LongTensor = None,
1372
+ attention_mask: Optional[torch.Tensor] = None,
1373
+ position_ids: Optional[torch.LongTensor] = None,
1374
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1375
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1376
+ labels: Optional[torch.LongTensor] = None,
1377
+ use_cache: Optional[bool] = None,
1378
+ output_attentions: Optional[bool] = None,
1379
+ output_hidden_states: Optional[bool] = None,
1380
+ return_dict: Optional[bool] = None,
1381
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1382
+ """
1383
+ ## modify delete routers
1384
+ Args:
1385
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1386
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1387
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1388
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1389
+
1390
+ Returns:
1391
+
1392
+ Example:
1393
+
1394
+ ```python
1395
+ >>> from transformers import AutoTokenizer, YuanForCausalLM
1396
+
1397
+ >>> model = YuanForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1398
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1399
+
1400
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
1401
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1402
+
1403
+ >>> # Generate
1404
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1405
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1406
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
1407
+ ```"""
1408
+
1409
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1410
+
1411
+ output_hidden_states = (
1412
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1413
+ )
1414
+
1415
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1416
+
1417
+ outputs = self.model(
1418
+ input_ids=input_ids,
1419
+ attention_mask=attention_mask,
1420
+ position_ids=position_ids,
1421
+ past_key_values=past_key_values,
1422
+ inputs_embeds=inputs_embeds,
1423
+ use_cache=use_cache,
1424
+ output_attentions=output_attentions,
1425
+ output_hidden_states=output_hidden_states,
1426
+ return_dict=return_dict,
1427
+ )
1428
+ hidden_states = outputs[0].transpose(0,1)
1429
+ #print(hidden_states)
1430
+ logits = self.lm_head(hidden_states)
1431
+
1432
+ loss = None
1433
+ if labels is not None:
1434
+ if self.use_loss_mask:
1435
+ loss_mask = self.get_loss_mask(input_ids, labels, self.eod_token, self.sep_token)
1436
+ # Shift so that tokens < n predict n
1437
+ shift_logits = logits[..., :-1, :].contiguous()
1438
+ shift_labels = labels[..., 1:].contiguous()
1439
+ # Flatten the tokens
1440
+ if self.use_loss_mask:
1441
+ loss_fct = CrossEntropyLoss(reduction='none')
1442
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1443
+ shift_labels = shift_labels.view(-1)
1444
+ # Enable model parallelism
1445
+ shift_labels = shift_labels.to(shift_logits.device)
1446
+ loss = loss_fct(shift_logits, shift_labels)
1447
+ loss = torch.sum(loss * loss_mask) / loss_mask.sum()
1448
+ else:
1449
+ loss_fct = CrossEntropyLoss()
1450
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1451
+ shift_labels = shift_labels.view(-1)
1452
+ # Enable model parallelism
1453
+ shift_labels = shift_labels.to(shift_logits.device)
1454
+ loss = loss_fct(shift_logits, shift_labels)
1455
+ if not return_dict:
1456
+ output = (logits,) + outputs[1:]
1457
+ return (loss,) + output if loss is not None else output
1458
+
1459
+ return CausalLMOutputWithPast(
1460
+ loss=loss,
1461
+ logits=logits,
1462
+ past_key_values=outputs.past_key_values,
1463
+ hidden_states=hidden_states,
1464
+ attentions=outputs.attentions,
1465
+ )
1466
+
1467
+ def prepare_inputs_for_generation(
1468
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1469
+ ):
1470
+
1471
+ position_ids = kwargs.get("position_ids", None)
1472
+ if attention_mask is not None and position_ids is None:
1473
+ # create position_ids on the fly for batch generation
1474
+ position_ids = attention_mask.long().cumsum(-1) - 1
1475
+ position_ids.masked_fill_(attention_mask == 0, 1)
1476
+ if past_key_values:
1477
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1478
+
1479
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1480
+ if inputs_embeds is not None and past_key_values is None:
1481
+ model_inputs = {"inputs_embeds": inputs_embeds}
1482
+ else:
1483
+ model_inputs = {"input_ids": input_ids}
1484
+
1485
+ model_inputs.update(
1486
+ {
1487
+ "position_ids": position_ids,
1488
+ "past_key_values": past_key_values,
1489
+ "use_cache": kwargs.get("use_cache"),
1490
+ "attention_mask": attention_mask,
1491
+ }
1492
+ )
1493
+ return model_inputs
1494
+
1495
+ @staticmethod
1496
+ def _reorder_cache(past_key_values, beam_idx):
1497
+ reordered_past = ()
1498
+ for layer_past in past_key_values:
1499
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
1500
+ return reordered_past
1501
+
1502
+
1503
+ @add_start_docstrings(
1504
+ """
1505
+ The Yuan Model transformer with a sequence classification head on top (linear layer).
1506
+
1507
+ [`YuanForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1508
+ (e.g. GPT-2) do.
1509
+
1510
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1511
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1512
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1513
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1514
+ each row of the batch).
1515
+ """,
1516
+ YUAN_START_DOCSTRING,
1517
+ )
1518
+ class YuanForSequenceClassification(YuanPreTrainedModel):
1519
+ #_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
1520
+
1521
+ def __init__(self, config):
1522
+ super().__init__(config)
1523
+ self.num_labels = config.num_labels
1524
+ self.model = YuanModel(config)
1525
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1526
+
1527
+ # Initialize weights and apply final processing
1528
+ self.post_init()
1529
+
1530
+ def get_input_embeddings(self):
1531
+ return self.model.embed_tokens
1532
+
1533
+ def set_input_embeddings(self, value):
1534
+ self.model.embed_tokens = value
1535
+
1536
+ @add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING)
1537
+ def forward(
1538
+ self,
1539
+ input_ids: torch.LongTensor = None,
1540
+ attention_mask: Optional[torch.Tensor] = None,
1541
+ position_ids: Optional[torch.LongTensor] = None,
1542
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1543
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1544
+ labels: Optional[torch.LongTensor] = None,
1545
+ use_cache: Optional[bool] = None,
1546
+ output_attentions: Optional[bool] = None,
1547
+ output_hidden_states: Optional[bool] = None,
1548
+ return_dict: Optional[bool] = None,
1549
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1550
+ r"""
1551
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1552
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1553
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1554
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1555
+ """
1556
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1557
+ transformer_outputs = self.model(
1558
+ input_ids,
1559
+ attention_mask=attention_mask,
1560
+ position_ids=position_ids,
1561
+ past_key_values=past_key_values,
1562
+ inputs_embeds=inputs_embeds,
1563
+ use_cache=use_cache,
1564
+ output_attentions=output_attentions,
1565
+ output_hidden_states=output_hidden_states,
1566
+ return_dict=return_dict,
1567
+ )
1568
+ hidden_states = transformer_outputs[0]
1569
+ logits = self.score(hidden_states)
1570
+
1571
+ if input_ids is not None:
1572
+ batch_size = input_ids.shape[0]
1573
+ else:
1574
+ batch_size = inputs_embeds.shape[0]
1575
+
1576
+ if self.config.pad_token_id is None and batch_size != 1:
1577
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1578
+ if self.config.pad_token_id is None:
1579
+ sequence_lengths = -1
1580
+ else:
1581
+ if input_ids is not None:
1582
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
1583
+ else:
1584
+ sequence_lengths = -1
1585
+
1586
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1587
+
1588
+ loss = None
1589
+ if labels is not None:
1590
+ labels = labels.to(logits.device)
1591
+ if self.config.problem_type is None:
1592
+ if self.num_labels == 1:
1593
+ self.config.problem_type = "regression"
1594
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1595
+ self.config.problem_type = "single_label_classification"
1596
+ else:
1597
+ self.config.problem_type = "multi_label_classification"
1598
+
1599
+ if self.config.problem_type == "regression":
1600
+ loss_fct = MSELoss()
1601
+ if self.num_labels == 1:
1602
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1603
+ else:
1604
+ loss = loss_fct(pooled_logits, labels)
1605
+ elif self.config.problem_type == "single_label_classification":
1606
+ loss_fct = CrossEntropyLoss()
1607
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1608
+ elif self.config.problem_type == "multi_label_classification":
1609
+ loss_fct = BCEWithLogitsLoss()
1610
+ loss = loss_fct(pooled_logits, labels)
1611
+ if not return_dict:
1612
+ output = (pooled_logits,) + transformer_outputs[1:]
1613
+ return ((loss,) + output) if loss is not None else output
1614
+
1615
+ return SequenceClassifierOutputWithPast(
1616
+ loss=loss,
1617
+ logits=pooled_logits,
1618
+ past_key_values=transformer_outputs.past_key_values,
1619
+ hidden_states=transformer_outputs.hidden_states,
1620
+ attentions=transformer_outputs.attentions,
1621
+ )
1622
+
1623
+
1624
+
modeling_yuanvl_chat.py ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # YuanVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import warnings
8
+ from typing import (Any, Callable, Iterable, List, Literal, Mapping, Optional,
9
+ Set, Tuple, Type, TypedDict, Union)
10
+
11
+ import torch.utils.checkpoint
12
+ import transformers
13
+ import torch
14
+ from torch import nn
15
+ from torch.nn import CrossEntropyLoss
16
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
17
+ LlamaTokenizer)
18
+ from transformers.modeling_outputs import CausalLMOutputWithPast
19
+ from transformers.modeling_utils import PreTrainedModel
20
+ from transformers.generation import GenerationMixin
21
+ from transformers.utils import ModelOutput, logging
22
+
23
+ #from transformer_engine.pytorch import RMSNorm
24
+ from transformers.activations import ACT2FN
25
+
26
+ from .configuration_yuanvl import YuanVLChatConfig
27
+ from .conversation import get_conv_template
28
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
29
+ from .modeling_yuanlm2 import YuanForCausalLM
30
+ from .utils import flatten_bn, merge_multimodal_embeddings
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ class RMSNorm(torch.nn.Module):
35
+ def __init__(self, hidden_size, eps=1e-6):
36
+ super().__init__()
37
+ self.weight = torch.nn.Parameter(torch.ones(hidden_size))
38
+ self.variance_epsilon = eps
39
+
40
+ def forward(self, hidden_states):
41
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
42
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
43
+
44
+ # convert into half-precision if necessary
45
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
46
+ hidden_states = hidden_states.to(self.weight.dtype)
47
+
48
+ return self.weight * hidden_states
49
+
50
+ class InternVLImagePixelInputs(TypedDict):
51
+ type: Literal["pixel_values"]
52
+ data: Union[torch.Tensor, List[torch.Tensor]]
53
+ """
54
+ Shape: `(batch_size, 1 + num_patches, num_channels, height, width)`
55
+
56
+ Note that `num_patches` may be different for each batch, in which case
57
+ the data is passed as a list instead of a batched tensor.
58
+ """
59
+ patches_per_image: List[int]
60
+ """
61
+ List of number of total patches for each image in the batch.
62
+ """
63
+
64
+
65
+ class InternVLImageEmbeddingInputs(TypedDict):
66
+ type: Literal["image_embeds"]
67
+ data: Any # in vllm vision this is a NestedTensors
68
+ """
69
+ A tensor of shape `(num_images, total_image_feature_size, hidden_size)`
70
+ or a list of tensors of shape `(total_image_feature_size, hidden_size)`
71
+
72
+ `hidden_size` must match the hidden size of language model backbone.
73
+ """
74
+
75
+
76
+ InternVLImageInputs = Union[InternVLImagePixelInputs,
77
+ InternVLImageEmbeddingInputs]
78
+
79
+
80
+ def version_cmp(v1, v2, op='eq'):
81
+ import operator
82
+
83
+ from packaging import version
84
+ op_func = getattr(operator, op)
85
+ return op_func(version.parse(v1), version.parse(v2))
86
+
87
+ class YuanImageMLP(nn.Module):
88
+
89
+ def __init__(
90
+ self,
91
+ hidden_size: int,
92
+ intermediate_size: int,
93
+ output_size: int,
94
+ hidden_act: str,
95
+ ) -> None:
96
+ super().__init__()
97
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
98
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
99
+ self.down_proj = nn.Linear(intermediate_size, output_size, bias=False)
100
+
101
+ if hidden_act != "silu":
102
+ raise ValueError(f"Unsupported activation: {hidden_act}. Only silu is supported for now.")
103
+
104
+ self.act_fn = ACT2FN[hidden_act]
105
+
106
+ @torch.compile
107
+ def swiglu(self, y_1, y_2):
108
+ return self.act_fn(y_1) * y_2
109
+
110
+ def forward(self, x):
111
+ x1 = self.up_proj(x)
112
+ x2 = self.gate_proj(x)
113
+ x3 = self.swiglu(x1, x2)
114
+ x = self.down_proj(x3)
115
+ return x
116
+
117
+ class YuanVLChatModel(PreTrainedModel, GenerationMixin):
118
+ config_class = YuanVLChatConfig
119
+ main_input_name = 'pixel_values'
120
+ base_model_prefix = 'language_model'
121
+ _supports_flash_attn_2 = True
122
+ _no_split_modules = ['InternVisionModel', 'YuanDeocderLayer']
123
+
124
+ def __init__(self, config: YuanVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
125
+ super().__init__(config)
126
+
127
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
128
+ image_size = config.force_image_size or config.vision_config.image_size
129
+ patch_size = config.vision_config.patch_size
130
+ self.patch_size = patch_size
131
+ self.select_layer = config.select_layer
132
+ self.template = config.template
133
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
134
+ self.downsample_ratio = config.downsample_ratio
135
+ self.ps_version = config.ps_version
136
+ use_flash_attn = use_flash_attn if has_flash_attn else False
137
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
138
+ config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
139
+
140
+ logger.info(f'num_image_token: {self.num_image_token}')
141
+ logger.info(f'ps_version: {self.ps_version}')
142
+ if vision_model is not None:
143
+ self.vision_model = vision_model
144
+ else:
145
+ self.vision_model = InternVisionModel(config.vision_config)
146
+ if language_model is not None:
147
+ self.language_model = language_model
148
+ else:
149
+ if config.llm_config.architectures[0] == 'YuanForCausalLM':
150
+ self.language_model = YuanForCausalLM(config.llm_config)
151
+ else:
152
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
153
+
154
+ self.pixel_unshuffle = torch.nn.PixelUnshuffle(downscale_factor=2)
155
+ layernorm_epsilon = config.llm_config.rms_norm_eps
156
+
157
+ self.imagemlp_input_hiddensize = int(config.vision_config.hidden_size / self.downsample_ratio ** 2)
158
+ self.imagemlp_ffn_hidden_size = config.llm_config.ffn_hidden_size
159
+
160
+ self.imagemlp = YuanImageMLP(self.imagemlp_input_hiddensize, self.imagemlp_ffn_hidden_size,
161
+ output_size=config.llm_config.hidden_size, hidden_act="silu")
162
+ self.imagemlp_layernorm = RMSNorm(config.llm_config.hidden_size, eps=layernorm_epsilon)
163
+
164
+ self.img_context_token_id = config.img_context_token_id
165
+ self.conv_template = get_conv_template(self.template)
166
+ self.system_message = self.conv_template.system_message
167
+
168
+ def _validate_pixel_values(self,
169
+ data: Union[torch.Tensor, List[torch.Tensor]]
170
+ ) -> Union[torch.Tensor, List[torch.Tensor]]:
171
+
172
+ h = w = self.config.vision_config.image_size
173
+ expected_dims = (3, h, w)
174
+
175
+ def _validate_shape(d: torch.Tensor):
176
+ actual_dims = tuple(d.shape)
177
+ if actual_dims != expected_dims:
178
+ # expected_expr = ("num_patches", *map(str, expected_dims))
179
+ expected_expr = (expected_dims)
180
+ raise ValueError("The expected shape of pixel values in each batch element "
181
+ f" is {expected_expr}. You supplied {tuple(d.shape)}.")
182
+ # data的数据类型可以是tensor,也可以是List[tensor]
183
+ # 从这一段上来看,image tensor的个数为 imbs*num_images
184
+ for d in data:
185
+ _validate_shape(d)
186
+ return data
187
+
188
+
189
+
190
+ def _parse_and_validate_image_input(self,
191
+ pixel_values: List[torch.Tensor] = None,
192
+ image_token_id: torch.Tensor = None,
193
+ image_embeds: torch.Tensor = None,
194
+ ) -> Optional[InternVLImagePixelInputs]:
195
+ # 没有图像数据
196
+ if pixel_values is None and image_embeds is None:
197
+ return None
198
+
199
+ # 传入数据有image_embeds
200
+ if image_embeds is not None:
201
+ if not isinstance(image_embeds, torch.Tensor):
202
+ raise ValueError("Incorrect type of image embeddings. "
203
+ f"Got type: {type(image_embeds)}")
204
+ return InternVLImageEmbeddingInputs(
205
+ type="image_embeds",
206
+ data=flatten_bn(image_embeds),
207
+ )
208
+
209
+ #self.img_context_token_id = image_token_id[0]
210
+ if pixel_values is not None:
211
+ if not isinstance(pixel_values, (torch.Tensor, list)):
212
+ raise ValueError("Incorrect type of pixel values. "
213
+ f"Got type: {type(pixel_values)}")
214
+ patches_per_image = []
215
+ # bsz/request循环
216
+ for request_pixel_values in pixel_values:
217
+ # 每个request的images循环
218
+ patches_per_image.append(request_pixel_values.shape[0])
219
+
220
+ # We need to flatten (B, N, P) to (B*N*P)
221
+ # so we call flatten_bn twice.
222
+ # (total_patches, 3, h, w)
223
+ return InternVLImagePixelInputs(
224
+ type="pixel_values",
225
+ data=self._validate_pixel_values(flatten_bn(pixel_values)),
226
+ patches_per_image=patches_per_image)
227
+ raise AssertionError("This line should be unreachable")
228
+
229
+ def _process_image_input(
230
+ self,
231
+ image_input: InternVLImageInputs,
232
+ ) -> Tuple[torch.Tensor] :
233
+ if image_input["type"] == "image_embeds":
234
+ return image_input["data"]
235
+ assert self.vision_model is not None
236
+ # (total_patches, tokens_per_image, llm_config.hidden_size)
237
+ image_embeds = self.extract_feature(image_input["data"])
238
+ patches_per_image = image_input["patches_per_image"]
239
+
240
+ # Only one image in the current batch
241
+ # bsz=1的情况,直接返回image_embeds
242
+ if len(patches_per_image) == 1:
243
+ # 返回一个tensor,[1, num_patches*256, text_config.hidden_size]
244
+ image_embeds = image_embeds.view(-1, self.config.llm_config.hidden_size).unsqueeze(1)
245
+ return image_embeds
246
+ # NOTE: Image embeddings are split into separate tensors for each image
247
+ # by the size of each embedding.
248
+ # feature_size 每个patch 256个token位置
249
+ feature_size = image_embeds.shape[1]
250
+ # (total_image_tokens, llm_config.hidden_size)
251
+ image_embeds = image_embeds.view(-1, self.config.llm_config.hidden_size)
252
+ image_feature_sizes = [num_patches * feature_size for num_patches in patches_per_image]
253
+ # 切分后得到一个Tuple,元组每个元胞表示一个image的image_embed, [num_patches * 256, llm_config.hidden_size]
254
+ image_embeds = image_embeds.split(image_feature_sizes)
255
+
256
+ return image_embeds
257
+
258
+
259
+
260
+ def get_multimodal_embeddings(self,
261
+ pixel_values: Optional[List[torch.Tensor]] = None,
262
+ image_token_id: Optional[List[torch.Tensor]] = None,
263
+ image_embeds: Optional[List[torch.Tensor]] = None,
264
+ image_input: InternVLImageInputs = None,
265
+ ):
266
+ image_input = self._parse_and_validate_image_input(pixel_values, image_token_id, image_embeds)
267
+ if image_input is None:
268
+ return None
269
+
270
+ # image_input: (total_patches, 3, h, w)
271
+ vision_embeddings = self._process_image_input(image_input)
272
+ return vision_embeddings
273
+
274
+ def get_input_embeddings(
275
+ self,
276
+ input_ids: torch.Tensor,
277
+ multimodal_embeddings: Optional[torch.Tensor]
278
+ ) -> torch.Tensor:
279
+ # 生成 token_embeddings
280
+ inputs_embeds = self.language_model.model.get_input_embeddings(input_ids)
281
+ # 将image embed放到img_context_token_id的位置
282
+ if multimodal_embeddings is not None:
283
+ assert self.img_context_token_id is not None
284
+ # input_ids: torch.Tensor
285
+ # inputs_embeds: torch.Tensor
286
+ # multimodal_embeddings: torch.Tensor
287
+ # placeholder_token_id: img_context_token_id
288
+ inputs_embeds = merge_multimodal_embeddings(
289
+ input_ids, inputs_embeds, multimodal_embeddings,
290
+ self.img_context_token_id)
291
+ return inputs_embeds
292
+
293
+ def forward(
294
+ self,
295
+ input_ids: torch.LongTensor = None,
296
+ attention_mask: torch.Tensor = None,
297
+ position_ids: torch.LongTensor = None,
298
+ past_key_values: List[torch.FloatTensor] = None,
299
+ inputs_embeds: Optional[torch.FloatTensor] = None,
300
+ labels: Optional[torch.LongTensor] = None,
301
+ use_cache: Optional[bool] = None,
302
+ output_attentions: Optional[bool] = None,
303
+ output_hidden_states: Optional[bool] = None,
304
+ return_dict: Optional[bool] = None,
305
+ pixel_values: Optional[List[torch.Tensor]] = None,
306
+ image_token_id: Optional[List[torch.Tensor]] = None,
307
+ image_embeds: Optional[List[torch.Tensor]] = None,
308
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
309
+
310
+ if inputs_embeds is None:
311
+ # (images, patches * token_per_image)
312
+ vision_embeddings = self.get_multimodal_embeddings(pixel_values, image_token_id, image_embeds)
313
+ # (tokens, hidden_size)
314
+ if input_ids is not None:
315
+ vision_embeddings = vision_embeddings.to(input_ids.device)
316
+ inputs_embeds = self.get_input_embeddings(input_ids, vision_embeddings) #.permute(1, 0, 2)
317
+ input_ids = None
318
+
319
+ hidden_states = self.language_model.model(input_ids, attention_mask, position_ids, past_key_values,
320
+ inputs_embeds, labels, use_cache, output_attentions,
321
+ output_hidden_states, return_dict)
322
+ return hidden_states
323
+
324
+ def pixel_shuffle(self, x, scale_factor=0.5):
325
+ n, w, h, c = x.size()
326
+ # N, W, H, C --> N, W, H * scale, C // scale
327
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
328
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
329
+ x = x.permute(0, 2, 1, 3).contiguous()
330
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
331
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
332
+ int(c / (scale_factor * scale_factor)))
333
+ if self.ps_version == 'v1':
334
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
335
+ 'which results in a transposed image.')
336
+ else:
337
+ x = x.permute(0, 2, 1, 3).contiguous()
338
+ return x
339
+
340
+ # Internvl vision
341
+ def extract_feature(self, pixel_values):
342
+ # pixel_values: (imbs * num_image, ic, ih, iw)
343
+ pixel_values = pixel_values.to(torch.bfloat16)
344
+ output = self.vision_model(pixel_values=pixel_values)
345
+ vit_embeds=output[0]
346
+ # vit_embeds: (imbs * num_images, h*w, vit_dim)
347
+ vit_embeds = vit_embeds[:, 1:, :]
348
+
349
+ pn, phw, pc = vit_embeds.shape
350
+ ph = pw = int(phw**0.5)
351
+ vit_embeds = vit_embeds.view(pn, ph, pw, pc).permute(0, 3, 1, 2)
352
+ vit_embeds = self.pixel_unshuffle(vit_embeds)
353
+ pn, pc, ph, pw = vit_embeds.shape
354
+ vit_embeds = vit_embeds.view(pn, pc, ph * pw).permute(0, 2, 1)
355
+ num_images, cvs, chs = vit_embeds.shape
356
+ #_, cvs, chs = vit_embeds.shape
357
+ #assert self.imagemlp_ffn_hidden_size == chs
358
+ #vit_embeds = vit_embeds.contiguous().view(imbs, num_image * cvs, chs).permute(1, 0, 2).contiguous()
359
+ vit_embeds = vit_embeds.reshape(1, -1, vit_embeds.shape[-1]).permute(1, 0, 2)
360
+ vit_embeds = self.imagemlp(vit_embeds)
361
+ vit_embeds = self.imagemlp_layernorm(vit_embeds)
362
+ vit_embeds = vit_embeds.view(num_images, cvs, -1)
363
+ return vit_embeds
364
+
365
+ @torch.no_grad()
366
+ def generate(
367
+ self,
368
+ pixel_values: Optional[torch.FloatTensor] = None,
369
+ input_ids: Optional[torch.FloatTensor] = None,
370
+ attention_mask: Optional[torch.LongTensor] = None,
371
+ visual_features: Optional[torch.FloatTensor] = None,
372
+ generation_config: Optional[GenerationConfig] = None,
373
+ position_ids: Optional[torch.Tensor] = None,
374
+ output_hidden_states: Optional[bool] = None,
375
+ ) -> torch.LongTensor:
376
+
377
+
378
+ if pixel_values is not None:
379
+ if visual_features is not None:
380
+ vit_embeds = visual_features
381
+ else:
382
+ vit_embeds = self.get_multimodal_embeddings(pixel_values)
383
+ if input_ids is not None:
384
+ vit_embeds = vit_embeds.to(input_ids.device)
385
+ inputs_embeds = self.get_input_embeddings(input_ids, vit_embeds)
386
+ input_ids = None
387
+
388
+
389
+ outputs = self.language_model.generate(
390
+ inputs_embeds=inputs_embeds,
391
+ attention_mask=attention_mask,
392
+ generation_config=generation_config,
393
+ output_hidden_states=output_hidden_states,
394
+ position_ids=position_ids,
395
+ max_length=8192,
396
+ use_cache=True,
397
+ )
398
+
399
+
400
+ return outputs
mq_test_demo.py ADDED
@@ -0,0 +1,576 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModel, AutoTokenizer
3
+ from PIL import Image
4
+ from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
5
+ CenterCrop, ColorJitter, Grayscale
6
+ import math
7
+
8
+ FILE_EXTENSIONS = ('.jpeg', '.txt', '.idx')
9
+ '''
10
+ args = {
11
+ "patch_size": 16,
12
+ "patch_num_width": 16,
13
+ "patch_num_height": 16,
14
+ "position_embedding_length": 4096,
15
+ "clip_model_name": 'InternViT-448',
16
+ "image_segment_method": 'dynamic',
17
+ "max_split_tile_num_multi_image": 1,
18
+ "clip_visual_size": 1024,
19
+ "clip_hidden_size": 1024,
20
+ "downsample_ratio": 0.5
21
+ }
22
+ '''
23
+ class args:
24
+ patch_size = 16
25
+ patch_num_width = 16
26
+ patch_num_height = 16
27
+ position_embedding_length = 4096
28
+ clip_model_name = 'InternViT-448'
29
+ image_segment_method = 'dynamic' ##'adaptive'
30
+ max_split_tile_num_multi_image = 1
31
+ max_split_tile_num_single_image = 9
32
+ clip_visual_size = 1024
33
+ clip_hidden_size = 1024
34
+ downsample_ratio = 0.5
35
+ shape_change_threshold = 0.5
36
+ bf16 = True
37
+ fp16 = False
38
+
39
+
40
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size, threshold):
41
+ best_ratio_diff = float('inf')
42
+ best_ratio = (1, 1)
43
+ area = width * height
44
+ for ratio in target_ratios:
45
+ target_aspect_ratio = ratio[0] / ratio[1]
46
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
47
+ size_diff_length = abs(((ratio[0]*image_size + ratio[1]*image_size)-(width+height)) / (width+height))
48
+ if ratio_diff < best_ratio_diff and size_diff_length <= threshold:
49
+ best_ratio_diff = ratio_diff
50
+ best_ratio = ratio
51
+ elif ratio_diff == best_ratio_diff:
52
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
53
+ best_ratio = ratio
54
+ return best_ratio
55
+
56
+ def build_transform(input_size):
57
+ #MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
58
+ transform = Compose([
59
+ Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
60
+ _convert_to_rgb,
61
+ ToTensor(),
62
+ Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
63
+ ])
64
+ return transform
65
+
66
+ def torch_extract_patches(image_tensor, patch_height, patch_width):
67
+ PATCH_SIZE = args.patch_size
68
+ PATCH_NUM_WIDTH = args.patch_num_width
69
+ PATCH_NUM_HEIGHT = args.patch_num_height
70
+ POSITION_EMBEDDING_LENGTH = args.position_embedding_length
71
+ print(PATCH_SIZE,PATCH_NUM_WIDTH,PATCH_NUM_HEIGHT,POSITION_EMBEDDING_LENGTH)
72
+ # 576
73
+ MAX_PATCHES = PATCH_NUM_WIDTH * PATCH_NUM_HEIGHT
74
+ #
75
+ TOKEN_LENGTH = 3 * PATCH_SIZE * PATCH_SIZE
76
+ # 336 336
77
+ IMAGE_WIDTH = PATCH_SIZE * PATCH_NUM_WIDTH
78
+ IMAGE_HEIGHT = PATCH_SIZE * PATCH_NUM_HEIGHT
79
+ image_tensor = image_tensor.unsqueeze(0)
80
+ patches = torch.nn.functional.unfold(image_tensor, (patch_height, patch_width), stride=(patch_height, patch_width))
81
+ patches = patches.reshape(image_tensor.size(0), image_tensor.size(1), patch_height, patch_width, -1)
82
+ patches = patches.permute(0, 4, 2, 3, 1).reshape(
83
+ image_tensor.size(2) // patch_height,
84
+ image_tensor.size(3) // patch_width,
85
+ image_tensor.size(1) * patch_height * patch_width,
86
+ )
87
+ return patches.unsqueeze(0)
88
+
89
+ # 用于计算adapt需要输入图片的大小
90
+ def adapt_size(originHeight:int,originWeight:int):
91
+ ### 用于计算adapt的图片大小
92
+ # 参数说明
93
+ # originHeight: 原图高度
94
+ # originWidth: 原图宽度
95
+ # patchHeight: patch高度
96
+ # patchWidth: patch宽度
97
+ # maxPatches: patch数目上限
98
+ # 返回值说明:
99
+ # resized_height: 插值后图片高度
100
+ # resized_width: 插值后图片宽度
101
+ # resized_patch_height_num: 插值后图片垂直patch数目
102
+ # resized_patch_width_num: 插值后图片水平patch数目
103
+ PATCH_SIZE = args.patch_size
104
+ PATCH_NUM_WIDTH = args.patch_num_width
105
+ PATCH_NUM_HEIGHT = args.patch_num_height
106
+ POSITION_EMBEDDING_LENGTH = args.position_embedding_length
107
+ print(PATCH_SIZE,PATCH_NUM_WIDTH,PATCH_NUM_HEIGHT,POSITION_EMBEDDING_LENGTH)
108
+ # 576
109
+ MAX_PATCHES = PATCH_NUM_WIDTH * PATCH_NUM_HEIGHT
110
+ #
111
+ TOKEN_LENGTH = 3 * PATCH_SIZE * PATCH_SIZE
112
+ # 336 336
113
+ IMAGE_WIDTH = PATCH_SIZE * PATCH_NUM_WIDTH
114
+ IMAGE_HEIGHT = PATCH_SIZE * PATCH_NUM_HEIGHT
115
+ patchHeight = PATCH_SIZE
116
+ patchWidth = PATCH_SIZE
117
+ maxPatches = MAX_PATCHES
118
+ scale = math.sqrt(maxPatches * (patchHeight / originHeight) * (patchWidth / originWeight))
119
+ resized_patch_height_num = max(min(math.floor(scale * originHeight / patchHeight), maxPatches), 1)
120
+ resized_patch_width_num = max(min(math.floor(scale * originWeight / patchWidth), maxPatches), 1)
121
+ resized_height = max(resized_patch_height_num * PATCH_SIZE, 1)
122
+ resized_width = max(resized_patch_width_num * PATCH_SIZE, 1)
123
+ return resized_height, resized_width, resized_patch_height_num, resized_patch_width_num
124
+
125
+ def cal_num_of_slices(origin_image_width, origin_image_height, max_num):
126
+ #import pdb
127
+ #pdb.set_trace()
128
+ PATCH_SIZE = args.patch_size
129
+ PATCH_NUM_WIDTH = args.patch_num_width
130
+ PATCH_NUM_HEIGHT = args.patch_num_height
131
+ POSITION_EMBEDDING_LENGTH = args.position_embedding_length
132
+ print(PATCH_SIZE,PATCH_NUM_WIDTH,PATCH_NUM_HEIGHT,POSITION_EMBEDDING_LENGTH)
133
+ # 576
134
+ MAX_PATCHES = PATCH_NUM_WIDTH * PATCH_NUM_HEIGHT
135
+ #
136
+ TOKEN_LENGTH = 3 * PATCH_SIZE * PATCH_SIZE
137
+ # 336 336
138
+ IMAGE_WIDTH = PATCH_SIZE * PATCH_NUM_WIDTH
139
+ IMAGE_HEIGHT = PATCH_SIZE * PATCH_NUM_HEIGHT
140
+ scale = origin_image_width*origin_image_height/(IMAGE_WIDTH*IMAGE_HEIGHT)
141
+
142
+ scale = math.ceil(scale)
143
+ max_num_img=max_num
144
+ if scale > max_num_img:
145
+ scale = max_num_img
146
+ def factorize(n):
147
+ factors = []
148
+ for i in range(1, n + 1):
149
+ if n % i == 0:
150
+ factors.append((i/(n/i), i, n // i))
151
+ return factors
152
+ numbers = [1, 2, 3, 4, 5, 6, 7,8,9,10,11,12,13,14,15]
153
+ factor_dict = {}
154
+ for num in numbers:
155
+ factor_dict[num] = factorize(num)
156
+ log_origin_ratio = math.log(origin_image_width/origin_image_height)
157
+ available_ratios = []
158
+ if scale<=2:
159
+ available_ratios = factor_dict[scale] + factor_dict[scale + 1]
160
+ else :
161
+ available_ratios = factor_dict[scale-1] + factor_dict[scale]+factor_dict[scale+1]
162
+
163
+ min_dif = 1000
164
+ best_w = 0
165
+ best_h = 0
166
+ for (r,w_slice,h_slice) in available_ratios:
167
+ log_r = math.log(r)
168
+ if min_dif > abs(log_r - log_origin_ratio):
169
+ min_dif = abs(log_r - log_origin_ratio)
170
+ best_w = w_slice
171
+ best_h = h_slice
172
+ return best_w,best_h
173
+ # 做图片切片
174
+ def get_patch_nums(origin_image_width, origin_image_height, max_num):
175
+ # 输入原图的尺寸
176
+ # 返回:
177
+ # slice_w_num 切片的w方向有多少个patch
178
+ # slice_h_num 切片的h方向有多少个patch
179
+ # abstract_w_num 原图的w方向有多少个patch
180
+ # abstract_h_num 原图的h方向有多少个patch
181
+ PATCH_SIZE = args.patch_size
182
+ PATCH_NUM_WIDTH = args.patch_num_width
183
+ PATCH_NUM_HEIGHT = args.patch_num_height
184
+ POSITION_EMBEDDING_LENGTH = args.position_embedding_length
185
+ print(PATCH_SIZE,PATCH_NUM_WIDTH,PATCH_NUM_HEIGHT,POSITION_EMBEDDING_LENGTH)
186
+ # 576
187
+ MAX_PATCHES = PATCH_NUM_WIDTH * PATCH_NUM_HEIGHT
188
+ #
189
+ TOKEN_LENGTH = 3 * PATCH_SIZE * PATCH_SIZE
190
+ # 336 336
191
+ IMAGE_WIDTH = PATCH_SIZE * PATCH_NUM_WIDTH
192
+ IMAGE_HEIGHT = PATCH_SIZE * PATCH_NUM_HEIGHT
193
+
194
+ best_w, best_h = cal_num_of_slices(origin_image_width,origin_image_height, max_num)
195
+ slice_width = origin_image_width//best_w
196
+ slice_height = origin_image_height//best_h
197
+ _,_,slice_h_num,slice_w_num = adapt_size(slice_height,slice_width)
198
+ _,_,abstract_h_num,abstract_w_num = adapt_size(origin_image_height,origin_image_width)
199
+ #print(slice_w_num,slice_h_num,abstract_w_num,abstract_h_num)
200
+ return slice_w_num,slice_h_num,abstract_w_num,abstract_h_num
201
+
202
+ def slice_image(image, max_num):
203
+
204
+ # slice the image according to our princeple
205
+ # return an array of slices
206
+ PATCH_SIZE = args.patch_size
207
+ PATCH_NUM_WIDTH = args.patch_num_width
208
+ PATCH_NUM_HEIGHT = args.patch_num_height
209
+ POSITION_EMBEDDING_LENGTH = args.position_embedding_length
210
+ print(PATCH_SIZE,PATCH_NUM_WIDTH,PATCH_NUM_HEIGHT,POSITION_EMBEDDING_LENGTH)
211
+ # 576
212
+ MAX_PATCHES = PATCH_NUM_WIDTH * PATCH_NUM_HEIGHT
213
+ #
214
+ TOKEN_LENGTH = 3 * PATCH_SIZE * PATCH_SIZE
215
+ # 336 336
216
+ IMAGE_WIDTH = PATCH_SIZE * PATCH_NUM_WIDTH
217
+ IMAGE_HEIGHT = PATCH_SIZE * PATCH_NUM_HEIGHT
218
+
219
+ origin_image_width = image.size[0]
220
+ origin_image_height = image.size[1]
221
+
222
+ best_w, best_h = cal_num_of_slices(origin_image_width=origin_image_width, origin_image_height=origin_image_height, max_num=max_num )
223
+ slices = []
224
+ # print(best_w,best_h)
225
+
226
+ for j in range(best_h):
227
+ for i in range(best_w):
228
+
229
+ box = (i * origin_image_width//best_w, j * origin_image_height//best_h, (i + 1) * origin_image_width//best_w, (j + 1) * origin_image_height//best_h)
230
+ # 切割图片
231
+ region = image.crop(box).convert("RGB")
232
+ # 添加到列表
233
+ slices.append(region)
234
+
235
+ return slices
236
+ def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, threshold=1):
237
+ orig_width, orig_height = image.size
238
+ aspect_ratio = orig_width / orig_height
239
+
240
+ # calculate the existing image aspect ratio
241
+ target_ratios = set(
242
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
243
+ i * j <= max_num and i * j >= min_num)
244
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
245
+ # find the closest aspect ratio to the target
246
+ target_aspect_ratio = find_closest_aspect_ratio(
247
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size, threshold)
248
+ # calculate the target width and height
249
+ target_width = image_size * target_aspect_ratio[0]
250
+ target_height = image_size * target_aspect_ratio[1]
251
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
252
+
253
+ # resize the image
254
+ resized_img = image.resize((target_width, target_height))
255
+ processed_images = []
256
+ for i in range(blocks):
257
+ box = (
258
+ (i % (target_width // image_size)) * image_size,
259
+ (i // (target_width // image_size)) * image_size,
260
+ ((i % (target_width // image_size)) + 1) * image_size,
261
+ ((i // (target_width // image_size)) + 1) * image_size
262
+ )
263
+ print(box)
264
+ # split the image
265
+ split_img = resized_img.crop(box)
266
+ processed_images.append(split_img)
267
+ assert len(processed_images) == blocks
268
+ if use_thumbnail and len(processed_images) != 1:
269
+ thumbnail_img = image.resize((image_size, image_size))
270
+ processed_images.append(thumbnail_img)
271
+ return processed_images
272
+
273
+ def process_image(image, image_size, max_num):
274
+ PATCH_SIZE = args.patch_size
275
+ PATCH_NUM_WIDTH = args.patch_num_width
276
+ PATCH_NUM_HEIGHT = args.patch_num_height
277
+ POSITION_EMBEDDING_LENGTH = args.position_embedding_length
278
+ print(PATCH_SIZE,PATCH_NUM_WIDTH,PATCH_NUM_HEIGHT,POSITION_EMBEDDING_LENGTH)
279
+ # 576
280
+ MAX_PATCHES = PATCH_NUM_WIDTH * PATCH_NUM_HEIGHT
281
+ #
282
+ TOKEN_LENGTH = 3 * PATCH_SIZE * PATCH_SIZE
283
+ # 336 336
284
+ IMAGE_WIDTH = PATCH_SIZE * PATCH_NUM_WIDTH
285
+ IMAGE_HEIGHT = PATCH_SIZE * PATCH_NUM_HEIGHT
286
+
287
+ origin_image_width = image.size[0]
288
+ origin_image_height = image.size[1]
289
+ image = image.convert("RGB")
290
+ slices = slice_image(image, max_num)
291
+ if len(slices) != 1:
292
+ thumbnail_img = image.resize((image_size, image_size))
293
+ slices.append(thumbnail_img)
294
+ # 计算resize之后的图片大小
295
+ resized_height, resized_width, resized_patch_height, resized_patch_width = \
296
+ adapt_size(origin_image_height,origin_image_width)
297
+ image = slices[0]
298
+ image_w = image.size[0]
299
+ image_h = image.size[1]
300
+ resized_height, resized_width, resized_patch_height, resized_patch_width = \
301
+ adapt_size(image_h,image_w)
302
+ image = ToTensor()(image)
303
+
304
+ image = torch.nn.functional.interpolate(
305
+ image.unsqueeze(0),
306
+ size=(resized_height, resized_width),
307
+ mode="bilinear",
308
+ align_corners=False,
309
+ antialias=True,
310
+ ).squeeze(0)
311
+ # 需要mask的patch数
312
+ num_patches_to_pad = MAX_PATCHES - resized_patch_height*resized_patch_width
313
+ # raprint("mask: ",num_patches_to_pad)
314
+ # 切割resize好的图片
315
+ image = torch_extract_patches(image,PATCH_SIZE, PATCH_SIZE)
316
+ image = image.reshape([resized_patch_width*resized_patch_height,TOKEN_LENGTH])
317
+ # 用0补全需要mask的图片部分
318
+ image = torch.nn.functional.pad(image, [0, 0, 0, num_patches_to_pad]).float() #torch.Size([196, 768])
319
+ image = image.reshape(PATCH_NUM_WIDTH, PATCH_NUM_HEIGHT, PATCH_SIZE, PATCH_SIZE, 3).permute(0, 2, 1, 3, 4).reshape(IMAGE_WIDTH, IMAGE_HEIGHT, 3).permute(2, 0 ,1)
320
+ #print(image.shape)
321
+ #image = torch.stack(image)
322
+ return slices
323
+
324
+ def _convert_to_rgb(image):
325
+ return image.convert('RGB')
326
+
327
+ def load_image(image_file, input_size=448, max_num=9):
328
+ image = Image.open(image_file).convert('RGB')
329
+ # image.save('seg_imge/'+image_file.split('/')[-1])
330
+ # print(max_num)
331
+ if args.clip_model_name == 'InternViT-448':
332
+ transform = build_transform(input_size=input_size)
333
+ #image_processor = CLIPImageProcessor.from_pretrained(args.clip_download_path)
334
+ #'/mnt/beegfs1/shenqiang/internvit-448/models--InternViT-300M-448px/'args.clip_download_path
335
+ if args.image_segment_method == 'adaptive':
336
+ images_processed = process_image(image, input_size, max_num)
337
+ elif args.image_segment_method == 'dynamic':
338
+ images_processed = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num, threshold=args.shape_change_threshold)
339
+ # pixel_values = [image_processor(images=image, return_tensors='pt').pixel_values.squeeze(0) for image in images_processed]
340
+ pixel_values = [transform(image) for image in images_processed]
341
+ else:
342
+ transform = build_transform(input_size=input_size)
343
+ if args.image_segment_method == 'adaptive':
344
+ images_processed = process_image(image, input_size, max_num)
345
+ elif args.image_segment_method == 'dynamic':
346
+ images_processed = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
347
+ pixel_values = [transform(image) for image in images_processed]
348
+
349
+ pixel_values = torch.stack(pixel_values)
350
+
351
+ return pixel_values
352
+
353
+ def preocess_imput(args, num_token_per_tile, image_path, question):
354
+ image_prompts = ''
355
+ if len(image_path) >= 2:
356
+ image_list = []
357
+ num_tile_per_image_list = []
358
+ for ipath in image_path:
359
+ images = load_image(ipath, max_num=args.max_split_tile_num_multi_image)
360
+ #images = load_image(ipath, max_num=args.max_split_tile_num_multi_image).view(1, -1, 3, 448, 448).cuda()
361
+ num_tile_this_image = len(images)
362
+ num_tile_per_image_list.append(num_tile_this_image)
363
+ image_list.append(images)
364
+ image_prompts = image_prompts + '<IMAGE>' + '<pad>' * num_tile_this_image * num_token_per_tile + '</IMAGE>'
365
+ num_tile_per_image_tensor = torch.Tensor(num_tile_per_image_list).long().cuda()
366
+ image_tensor = torch.cat(image_list, dim=0).view(1, -1, 3, 448, 448).cuda()
367
+
368
+ else:
369
+ #images_tensor = load_image(image_path, max_num=args.max_split_tile_num_single_image).view(1, -1, 3, 448, 448).cuda()
370
+ images = load_image(image_path[0], max_num=args.max_split_tile_num_single_image)
371
+ num_tile_this_image = len(images)
372
+ num_tile_per_image_tensor = torch.Tensor([num_tile_this_image]).long().cuda()
373
+ image_tensor = images.view(1, -1, 3, 448, 448).cuda()
374
+ image_prompts = image_prompts + '<IMAGE>' + '<pad>' * num_tile_this_image * num_token_per_tile + '</IMAGE>'
375
+
376
+ if args.fp16:
377
+ image_tensor = image_tensor.half()
378
+ elif args.bf16:
379
+ image_tensor = image_tensor.bfloat16()
380
+ else:
381
+ image_tensor = image_tensor.float()
382
+
383
+ images_input = {'num_tile_per_image_tensor': num_tile_per_image_tensor,
384
+ 'image_tensor': image_tensor}
385
+
386
+ prompts = ['<BOS>' + image_prompts + question[0] + '<sep>']
387
+
388
+ return prompts, images_input
389
+
390
+
391
+ def _build_yuanvl_attention_mask_and_position_ids(tokenizer, tokens, images_input=None):
392
+ """Build the attention mask and postition ids for the input tokens."""
393
+
394
+ # Since we are not interested in loss-mask and reset attention/position
395
+ # is also False, eod_token is not used so it is safe to set it to None.
396
+
397
+ bos_token, image_start_token, image_end_token, pad_token, sep_tpken, eod_token = (tokenizer(tok)['input_ids'][0] for tok in ['<BOS>','<IMAGE>', '</IMAGE>', '<pad>', '<sep>', '<eod>'])
398
+ #eod_token = tokenizer("<eod>")['input_ids'][0]
399
+
400
+ attention_mask, position_ids, image_info = get_ltor_masks_and_position_ids_yuanvl_inference(
401
+ tokens,
402
+ bos_token,
403
+ image_start_token,
404
+ image_end_token,
405
+ eod_token,
406
+ pad_token,
407
+ images_input)
408
+
409
+
410
+ '''attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
411
+ data=tokens,
412
+ eod_token=None,
413
+ reset_position_ids=False,
414
+ reset_attention_mask=False,
415
+ eod_mask_loss=False)'''
416
+
417
+ return attention_mask, position_ids, image_info
418
+
419
+ def get_ltor_masks_and_position_ids_yuanvl_inference(data,
420
+ bos_token,
421
+ image_start_token,
422
+ image_end_token,
423
+ eod_token,
424
+ pad_token,
425
+ images_input,
426
+ reset_attention_mask=False):
427
+ """Build masks and position id for left to right model."""
428
+ # Extract batch size and sequence length.
429
+ micro_batch_size, seq_length = data.size()
430
+ assert micro_batch_size == 1, 'yuanvl support mbs = 1 only'
431
+
432
+ # Attention mask (lower triangular).
433
+ if reset_attention_mask:
434
+ att_mask_batch = micro_batch_size
435
+ else:
436
+ att_mask_batch = 1
437
+ attention_mask = torch.tril(torch.ones(
438
+ (att_mask_batch, seq_length, seq_length), device=data.device)).view(
439
+ att_mask_batch, 1, seq_length, seq_length)
440
+
441
+
442
+ # Position ids.
443
+ position_ids = torch.arange(seq_length, dtype=torch.long,
444
+ device=data.device)
445
+ position_ids = position_ids.unsqueeze(0).expand_as(data)
446
+ #input_pad = []
447
+ #image_info = {}
448
+
449
+ #import pdb
450
+ #pdb.set_trace()
451
+ #if torch.distributed.get_rank() == 0:
452
+
453
+ #pdb.set_trace()
454
+ if images_input is not None:
455
+ num_tile_per_image_tensor = images_input['num_tile_per_image_tensor']
456
+ images_tensor = images_input['image_tensor']
457
+ input_pad = []
458
+ image_info = {}
459
+ position_ids_use = torch.zeros(data.shape).to(position_ids)
460
+ for b in range(micro_batch_size):
461
+ bos_index = position_ids[b, data[b] == bos_token]
462
+ pad_index = position_ids[b, data[b] == pad_token]
463
+ image_start_index = position_ids[b, data[b] == image_start_token]
464
+ image_end_index = position_ids[b, data[b] == image_end_token]
465
+ #eod_index = position_ids[b, data[b] == eod_token]
466
+ #assert len(bos_index) == len(eod_index)
467
+ num_image = len(num_tile_per_image_tensor)
468
+
469
+ #num_tile = pad_index.shape[0] // clip_visual_size
470
+ #image_info['num_image'] = num_image
471
+ image_info['num_tile'] = num_tile_per_image_tensor
472
+ #image_info['bos_pos'] = bos_index.tolist()
473
+ image_info['image_start_pos'] = image_start_index.tolist()
474
+ #image_info['image_end_pos'] = image_end_index.tolist()
475
+
476
+ #for j in range(image_index.size()[0]):
477
+ # start_idx = image_index[j]
478
+ # diff = seq_length - start_idx
479
+ # position_ids_use[b][start_idx : ] = torch.arange(diff, dtype=torch.long,
480
+ # device=data.device)
481
+ start_idx = image_end_index[-1]
482
+ diff = seq_length - start_idx
483
+ position_ids_use[b][start_idx : ] = torch.arange(diff, dtype=torch.long,
484
+ device=data.device)
485
+ else:
486
+ position_ids = torch.arange(seq_length, dtype=torch.long,
487
+ device=data.device)
488
+ position_ids = position_ids.unsqueeze(0)#.expand_as(data)
489
+ position_ids_use = position_ids
490
+ image_info = None
491
+ #image_info['eod_pos'] = eod_index.tolist()
492
+ #for j in range(bos_index.size()[0]):
493
+ # start_idx = bos_index[j]
494
+ # end_idx = eod_index[j]
495
+ # input_pad = input_pad + [bos_token] + [pad_token] * clip_visual_size + data[b][start_idx + 1 : end_idx + 1].tolist()
496
+ #data_nopad = data[b][:eod_index[j]+1].view(1, -1)
497
+ #input_pad = input_pad + [pad_token]
498
+
499
+
500
+ # Position ids.
501
+ #position_ids = torch.arange(seq_length + clip_visual_size * num_image, dtype=torch.long,
502
+ #position_ids = torch.arange(seq_length, dtype=torch.long,
503
+ # device=data.device)
504
+ #position_ids = position_ids.unsqueeze(0)#.expand_as(data)
505
+
506
+
507
+
508
+ # Convert attention mask to binary:
509
+ attention_mask = (attention_mask < 0.5)
510
+
511
+ '''xattn_position_ids = torch.arange(seq_length, dtype=torch.long,
512
+ device=data.device)
513
+ xattn_position_ids = xattn_position_ids.unsqueeze(0).expand_as(data)
514
+
515
+ for b in range(micro_batch_size):
516
+
517
+ bos_index = xattn_position_ids[b, data[b] == bos_token]
518
+
519
+ num_image = len(bos_index)
520
+
521
+ xattn_mask = torch.zeros((micro_batch_size, seq_length, num_image * clip_visual_size), device = data.device).view(micro_batch_size, 1, seq_length, num_image * clip_visual_size)
522
+
523
+ for j in range(bos_index.size()[0]):
524
+ sidx = bos_index[j]
525
+
526
+ image_sidx = j * clip_visual_size
527
+ image_eidx = (j + 1) * clip_visual_size
528
+
529
+ #xattn_mask[b, 0, (sidx + 1) : , image_sidx : image_eidx] = 1
530
+ xattn_mask[b, 0, sidx : , image_sidx : image_eidx] = 1
531
+ #xattn_mask[b, 0, sidx : (eidx + 1), image_sidx : image_eidx] = 1
532
+
533
+ xattn_mask = (xattn_mask < 0.5)'''
534
+
535
+ return attention_mask, position_ids_use, image_info
536
+
537
+ tokenizer_loadpath = "/mnt/beegfs3/zhaoxudong/code/yuanvl_hf_40B_stage2_pcase4_12pp/"
538
+ model_loadpath = "/mnt/beegfs3/zhaoxudong/code/yuanvl_hf_40B_stage2_pcase4_12pp/"
539
+
540
+
541
+ # 加载本地模型
542
+ model = AutoModel.from_pretrained(
543
+ model_loadpath,
544
+ torch_dtype=torch.bfloat16,
545
+ low_cpu_mem_usage=True,
546
+ use_flash_attn=False,
547
+ device_map="auto",
548
+ trust_remote_code=True).eval()
549
+
550
+
551
+ print("Creat model finish")
552
+
553
+ # 加载本地 Tokenizer
554
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_loadpath)
555
+
556
+
557
+ num_token_per_tile = int(args.clip_visual_size * args.downsample_ratio**2)
558
+
559
+ # demo 1
560
+ image_path = ['/mnt/beegfs3/zhaoxudong/code/image.jpeg']
561
+ question = ['Please describe the picture']
562
+ question = ['请描述这张图片的内容']
563
+
564
+ prompts, images_input = preocess_imput(args, num_token_per_tile, image_path, question)
565
+
566
+ input=tokenizer(prompts, return_tensors="pt")
567
+ input_ids = input['input_ids'].to("cuda")
568
+ pixel_values=images_input['image_tensor']
569
+
570
+ attention_mask, position_ids, image_info = _build_yuanvl_attention_mask_and_position_ids(
571
+ tokenizer, input_ids, images_input)
572
+
573
+ attention_mask = input['attention_mask'].to("cuda")
574
+
575
+ output = model.generate(pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids)
576
+ print(tokenizer.decode(output[0]))
recipe.yaml ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ default_stage:
2
+ default_modifiers:
3
+ GPTQModifier:
4
+ targets: [Linear]
5
+ ignore: ['re:.*lm_head$', 're:.*qkv$', 're:.*fc1$', 're:.*fc2$', 're:.*attn.proj$',
6
+ 're:.*up_proj$', 're:.*gate_proj$', 're:.*down_proj$', 're:.*router.query_key_value$']
7
+ scheme: W4A16
8
+ sequential_update: true
9
+ block_size: 128
10
+ dampening_frac: 0.01
11
+ offload_hessians: false
special_tokens_map.json ADDED
@@ -0,0 +1,1085 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<s>",
4
+ "<eod>",
5
+ "<unk>",
6
+ "<sep>",
7
+ "<pad>",
8
+ "<mask>",
9
+ "<predict>",
10
+ "<FIM_SUFFIX>",
11
+ "<FIM_PREFIX>",
12
+ "<FIM_MIDDLE>",
13
+ "<commit_before>",
14
+ "<commit_msg>",
15
+ "<commit_after>",
16
+ "<jupyter_start>",
17
+ "<jupyter_text>",
18
+ "<jupyter_code>",
19
+ "<jupyter_output>",
20
+ "<empty_output>",
21
+ "<repo_name>",
22
+ "<file_sep>",
23
+ "<BOS>",
24
+ "<IMAGE>",
25
+ "</IMAGE>",
26
+ "<grounding>",
27
+ "<obj>",
28
+ "</obj>",
29
+ "<box>",
30
+ "</box>",
31
+ "<point>",
32
+ "</point>",
33
+ "<3dbox>",
34
+ "</3dbox>",
35
+ "<depth>",
36
+ "</depth>",
37
+ "s000",
38
+ "s001",
39
+ "s002",
40
+ "s003",
41
+ "s004",
42
+ "s005",
43
+ "s006",
44
+ "s007",
45
+ "s008",
46
+ "s009",
47
+ "s010",
48
+ "s011",
49
+ "s012",
50
+ "s013",
51
+ "s014",
52
+ "s015",
53
+ "s016",
54
+ "s017",
55
+ "s018",
56
+ "s019",
57
+ "s020",
58
+ "s021",
59
+ "s022",
60
+ "s023",
61
+ "s024",
62
+ "s025",
63
+ "s026",
64
+ "s027",
65
+ "s028",
66
+ "s029",
67
+ "s030",
68
+ "s031",
69
+ "s032",
70
+ "s033",
71
+ "s034",
72
+ "s035",
73
+ "s036",
74
+ "s037",
75
+ "s038",
76
+ "s039",
77
+ "s040",
78
+ "s041",
79
+ "s042",
80
+ "s043",
81
+ "s044",
82
+ "s045",
83
+ "s046",
84
+ "s047",
85
+ "s048",
86
+ "s049",
87
+ "s050",
88
+ "s051",
89
+ "s052",
90
+ "s053",
91
+ "s054",
92
+ "s055",
93
+ "s056",
94
+ "s057",
95
+ "s058",
96
+ "s059",
97
+ "s060",
98
+ "s061",
99
+ "s062",
100
+ "s063",
101
+ "s064",
102
+ "s065",
103
+ "s066",
104
+ "s067",
105
+ "s068",
106
+ "s069",
107
+ "s070",
108
+ "s071",
109
+ "s072",
110
+ "s073",
111
+ "s074",
112
+ "s075",
113
+ "s076",
114
+ "s077",
115
+ "s078",
116
+ "s079",
117
+ "s080",
118
+ "s081",
119
+ "s082",
120
+ "s083",
121
+ "s084",
122
+ "s085",
123
+ "s086",
124
+ "s087",
125
+ "s088",
126
+ "s089",
127
+ "s090",
128
+ "s091",
129
+ "s092",
130
+ "s093",
131
+ "s094",
132
+ "s095",
133
+ "s096",
134
+ "s097",
135
+ "s098",
136
+ "s099",
137
+ "s100",
138
+ "s101",
139
+ "s102",
140
+ "s103",
141
+ "s104",
142
+ "s105",
143
+ "s106",
144
+ "s107",
145
+ "s108",
146
+ "s109",
147
+ "s110",
148
+ "s111",
149
+ "s112",
150
+ "s113",
151
+ "s114",
152
+ "s115",
153
+ "s116",
154
+ "s117",
155
+ "s118",
156
+ "s119",
157
+ "s120",
158
+ "s121",
159
+ "s122",
160
+ "s123",
161
+ "s124",
162
+ "s125",
163
+ "s126",
164
+ "s127",
165
+ "s128",
166
+ "s129",
167
+ "s130",
168
+ "s131",
169
+ "s132",
170
+ "s133",
171
+ "s134",
172
+ "s135",
173
+ "s136",
174
+ "s137",
175
+ "s138",
176
+ "s139",
177
+ "s140",
178
+ "s141",
179
+ "s142",
180
+ "s143",
181
+ "s144",
182
+ "s145",
183
+ "s146",
184
+ "s147",
185
+ "s148",
186
+ "s149",
187
+ "s150",
188
+ "s151",
189
+ "s152",
190
+ "s153",
191
+ "s154",
192
+ "s155",
193
+ "s156",
194
+ "s157",
195
+ "s158",
196
+ "s159",
197
+ "s160",
198
+ "s161",
199
+ "s162",
200
+ "s163",
201
+ "s164",
202
+ "s165",
203
+ "s166",
204
+ "s167",
205
+ "s168",
206
+ "s169",
207
+ "s170",
208
+ "s171",
209
+ "s172",
210
+ "s173",
211
+ "s174",
212
+ "s175",
213
+ "s176",
214
+ "s177",
215
+ "s178",
216
+ "s179",
217
+ "s180",
218
+ "s181",
219
+ "s182",
220
+ "s183",
221
+ "s184",
222
+ "s185",
223
+ "s186",
224
+ "s187",
225
+ "s188",
226
+ "s189",
227
+ "s190",
228
+ "s191",
229
+ "s192",
230
+ "s193",
231
+ "s194",
232
+ "s195",
233
+ "s196",
234
+ "s197",
235
+ "s198",
236
+ "s199",
237
+ "s200",
238
+ "s201",
239
+ "s202",
240
+ "s203",
241
+ "s204",
242
+ "s205",
243
+ "s206",
244
+ "s207",
245
+ "s208",
246
+ "s209",
247
+ "s210",
248
+ "s211",
249
+ "s212",
250
+ "s213",
251
+ "s214",
252
+ "s215",
253
+ "s216",
254
+ "s217",
255
+ "s218",
256
+ "s219",
257
+ "s220",
258
+ "s221",
259
+ "s222",
260
+ "s223",
261
+ "s224",
262
+ "s225",
263
+ "s226",
264
+ "s227",
265
+ "s228",
266
+ "s229",
267
+ "s230",
268
+ "s231",
269
+ "s232",
270
+ "s233",
271
+ "s234",
272
+ "s235",
273
+ "s236",
274
+ "s237",
275
+ "s238",
276
+ "s239",
277
+ "s240",
278
+ "s241",
279
+ "s242",
280
+ "s243",
281
+ "s244",
282
+ "s245",
283
+ "s246",
284
+ "s247",
285
+ "s248",
286
+ "s249",
287
+ "s250",
288
+ "s251",
289
+ "s252",
290
+ "s253",
291
+ "s254",
292
+ "s255",
293
+ "s256",
294
+ "s257",
295
+ "s258",
296
+ "s259",
297
+ "s260",
298
+ "s261",
299
+ "s262",
300
+ "s263",
301
+ "s264",
302
+ "s265",
303
+ "s266",
304
+ "s267",
305
+ "s268",
306
+ "s269",
307
+ "s270",
308
+ "s271",
309
+ "s272",
310
+ "s273",
311
+ "s274",
312
+ "s275",
313
+ "s276",
314
+ "s277",
315
+ "s278",
316
+ "s279",
317
+ "s280",
318
+ "s281",
319
+ "s282",
320
+ "s283",
321
+ "s284",
322
+ "s285",
323
+ "s286",
324
+ "s287",
325
+ "s288",
326
+ "s289",
327
+ "s290",
328
+ "s291",
329
+ "s292",
330
+ "s293",
331
+ "s294",
332
+ "s295",
333
+ "s296",
334
+ "s297",
335
+ "s298",
336
+ "s299",
337
+ "s300",
338
+ "s301",
339
+ "s302",
340
+ "s303",
341
+ "s304",
342
+ "s305",
343
+ "s306",
344
+ "s307",
345
+ "s308",
346
+ "s309",
347
+ "s310",
348
+ "s311",
349
+ "s312",
350
+ "s313",
351
+ "s314",
352
+ "s315",
353
+ "s316",
354
+ "s317",
355
+ "s318",
356
+ "s319",
357
+ "s320",
358
+ "s321",
359
+ "s322",
360
+ "s323",
361
+ "s324",
362
+ "s325",
363
+ "s326",
364
+ "s327",
365
+ "s328",
366
+ "s329",
367
+ "s330",
368
+ "s331",
369
+ "s332",
370
+ "s333",
371
+ "s334",
372
+ "s335",
373
+ "s336",
374
+ "s337",
375
+ "s338",
376
+ "s339",
377
+ "s340",
378
+ "s341",
379
+ "s342",
380
+ "s343",
381
+ "s344",
382
+ "s345",
383
+ "s346",
384
+ "s347",
385
+ "s348",
386
+ "s349",
387
+ "s350",
388
+ "s351",
389
+ "s352",
390
+ "s353",
391
+ "s354",
392
+ "s355",
393
+ "s356",
394
+ "s357",
395
+ "s358",
396
+ "s359",
397
+ "s360",
398
+ "s361",
399
+ "s362",
400
+ "s363",
401
+ "s364",
402
+ "s365",
403
+ "s366",
404
+ "s367",
405
+ "s368",
406
+ "s369",
407
+ "s370",
408
+ "s371",
409
+ "s372",
410
+ "s373",
411
+ "s374",
412
+ "s375",
413
+ "s376",
414
+ "s377",
415
+ "s378",
416
+ "s379",
417
+ "s380",
418
+ "s381",
419
+ "s382",
420
+ "s383",
421
+ "s384",
422
+ "s385",
423
+ "s386",
424
+ "s387",
425
+ "s388",
426
+ "s389",
427
+ "s390",
428
+ "s391",
429
+ "s392",
430
+ "s393",
431
+ "s394",
432
+ "s395",
433
+ "s396",
434
+ "s397",
435
+ "s398",
436
+ "s399",
437
+ "s400",
438
+ "s401",
439
+ "s402",
440
+ "s403",
441
+ "s404",
442
+ "s405",
443
+ "s406",
444
+ "s407",
445
+ "s408",
446
+ "s409",
447
+ "s410",
448
+ "s411",
449
+ "s412",
450
+ "s413",
451
+ "s414",
452
+ "s415",
453
+ "s416",
454
+ "s417",
455
+ "s418",
456
+ "s419",
457
+ "s420",
458
+ "s421",
459
+ "s422",
460
+ "s423",
461
+ "s424",
462
+ "s425",
463
+ "s426",
464
+ "s427",
465
+ "s428",
466
+ "s429",
467
+ "s430",
468
+ "s431",
469
+ "s432",
470
+ "s433",
471
+ "s434",
472
+ "s435",
473
+ "s436",
474
+ "s437",
475
+ "s438",
476
+ "s439",
477
+ "s440",
478
+ "s441",
479
+ "s442",
480
+ "s443",
481
+ "s444",
482
+ "s445",
483
+ "s446",
484
+ "s447",
485
+ "s448",
486
+ "s449",
487
+ "s450",
488
+ "s451",
489
+ "s452",
490
+ "s453",
491
+ "s454",
492
+ "s455",
493
+ "s456",
494
+ "s457",
495
+ "s458",
496
+ "s459",
497
+ "s460",
498
+ "s461",
499
+ "s462",
500
+ "s463",
501
+ "s464",
502
+ "s465",
503
+ "s466",
504
+ "s467",
505
+ "s468",
506
+ "s469",
507
+ "s470",
508
+ "s471",
509
+ "s472",
510
+ "s473",
511
+ "s474",
512
+ "s475",
513
+ "s476",
514
+ "s477",
515
+ "s478",
516
+ "s479",
517
+ "s480",
518
+ "s481",
519
+ "s482",
520
+ "s483",
521
+ "s484",
522
+ "s485",
523
+ "s486",
524
+ "s487",
525
+ "s488",
526
+ "s489",
527
+ "s490",
528
+ "s491",
529
+ "s492",
530
+ "s493",
531
+ "s494",
532
+ "s495",
533
+ "s496",
534
+ "s497",
535
+ "s498",
536
+ "s499",
537
+ "s500",
538
+ "s501",
539
+ "s502",
540
+ "s503",
541
+ "s504",
542
+ "s505",
543
+ "s506",
544
+ "s507",
545
+ "s508",
546
+ "s509",
547
+ "s510",
548
+ "s511",
549
+ "s512",
550
+ "s513",
551
+ "s514",
552
+ "s515",
553
+ "s516",
554
+ "s517",
555
+ "s518",
556
+ "s519",
557
+ "s520",
558
+ "s521",
559
+ "s522",
560
+ "s523",
561
+ "s524",
562
+ "s525",
563
+ "s526",
564
+ "s527",
565
+ "s528",
566
+ "s529",
567
+ "s530",
568
+ "s531",
569
+ "s532",
570
+ "s533",
571
+ "s534",
572
+ "s535",
573
+ "s536",
574
+ "s537",
575
+ "s538",
576
+ "s539",
577
+ "s540",
578
+ "s541",
579
+ "s542",
580
+ "s543",
581
+ "s544",
582
+ "s545",
583
+ "s546",
584
+ "s547",
585
+ "s548",
586
+ "s549",
587
+ "s550",
588
+ "s551",
589
+ "s552",
590
+ "s553",
591
+ "s554",
592
+ "s555",
593
+ "s556",
594
+ "s557",
595
+ "s558",
596
+ "s559",
597
+ "s560",
598
+ "s561",
599
+ "s562",
600
+ "s563",
601
+ "s564",
602
+ "s565",
603
+ "s566",
604
+ "s567",
605
+ "s568",
606
+ "s569",
607
+ "s570",
608
+ "s571",
609
+ "s572",
610
+ "s573",
611
+ "s574",
612
+ "s575",
613
+ "s576",
614
+ "s577",
615
+ "s578",
616
+ "s579",
617
+ "s580",
618
+ "s581",
619
+ "s582",
620
+ "s583",
621
+ "s584",
622
+ "s585",
623
+ "s586",
624
+ "s587",
625
+ "s588",
626
+ "s589",
627
+ "s590",
628
+ "s591",
629
+ "s592",
630
+ "s593",
631
+ "s594",
632
+ "s595",
633
+ "s596",
634
+ "s597",
635
+ "s598",
636
+ "s599",
637
+ "s600",
638
+ "s601",
639
+ "s602",
640
+ "s603",
641
+ "s604",
642
+ "s605",
643
+ "s606",
644
+ "s607",
645
+ "s608",
646
+ "s609",
647
+ "s610",
648
+ "s611",
649
+ "s612",
650
+ "s613",
651
+ "s614",
652
+ "s615",
653
+ "s616",
654
+ "s617",
655
+ "s618",
656
+ "s619",
657
+ "s620",
658
+ "s621",
659
+ "s622",
660
+ "s623",
661
+ "s624",
662
+ "s625",
663
+ "s626",
664
+ "s627",
665
+ "s628",
666
+ "s629",
667
+ "s630",
668
+ "s631",
669
+ "s632",
670
+ "s633",
671
+ "s634",
672
+ "s635",
673
+ "s636",
674
+ "s637",
675
+ "s638",
676
+ "s639",
677
+ "s640",
678
+ "s641",
679
+ "s642",
680
+ "s643",
681
+ "s644",
682
+ "s645",
683
+ "s646",
684
+ "s647",
685
+ "s648",
686
+ "s649",
687
+ "s650",
688
+ "s651",
689
+ "s652",
690
+ "s653",
691
+ "s654",
692
+ "s655",
693
+ "s656",
694
+ "s657",
695
+ "s658",
696
+ "s659",
697
+ "s660",
698
+ "s661",
699
+ "s662",
700
+ "s663",
701
+ "s664",
702
+ "s665",
703
+ "s666",
704
+ "s667",
705
+ "s668",
706
+ "s669",
707
+ "s670",
708
+ "s671",
709
+ "s672",
710
+ "s673",
711
+ "s674",
712
+ "s675",
713
+ "s676",
714
+ "s677",
715
+ "s678",
716
+ "s679",
717
+ "s680",
718
+ "s681",
719
+ "s682",
720
+ "s683",
721
+ "s684",
722
+ "s685",
723
+ "s686",
724
+ "s687",
725
+ "s688",
726
+ "s689",
727
+ "s690",
728
+ "s691",
729
+ "s692",
730
+ "s693",
731
+ "s694",
732
+ "s695",
733
+ "s696",
734
+ "s697",
735
+ "s698",
736
+ "s699",
737
+ "s700",
738
+ "s701",
739
+ "s702",
740
+ "s703",
741
+ "s704",
742
+ "s705",
743
+ "s706",
744
+ "s707",
745
+ "s708",
746
+ "s709",
747
+ "s710",
748
+ "s711",
749
+ "s712",
750
+ "s713",
751
+ "s714",
752
+ "s715",
753
+ "s716",
754
+ "s717",
755
+ "s718",
756
+ "s719",
757
+ "s720",
758
+ "s721",
759
+ "s722",
760
+ "s723",
761
+ "s724",
762
+ "s725",
763
+ "s726",
764
+ "s727",
765
+ "s728",
766
+ "s729",
767
+ "s730",
768
+ "s731",
769
+ "s732",
770
+ "s733",
771
+ "s734",
772
+ "s735",
773
+ "s736",
774
+ "s737",
775
+ "s738",
776
+ "s739",
777
+ "s740",
778
+ "s741",
779
+ "s742",
780
+ "s743",
781
+ "s744",
782
+ "s745",
783
+ "s746",
784
+ "s747",
785
+ "s748",
786
+ "s749",
787
+ "s750",
788
+ "s751",
789
+ "s752",
790
+ "s753",
791
+ "s754",
792
+ "s755",
793
+ "s756",
794
+ "s757",
795
+ "s758",
796
+ "s759",
797
+ "s760",
798
+ "s761",
799
+ "s762",
800
+ "s763",
801
+ "s764",
802
+ "s765",
803
+ "s766",
804
+ "s767",
805
+ "s768",
806
+ "s769",
807
+ "s770",
808
+ "s771",
809
+ "s772",
810
+ "s773",
811
+ "s774",
812
+ "s775",
813
+ "s776",
814
+ "s777",
815
+ "s778",
816
+ "s779",
817
+ "s780",
818
+ "s781",
819
+ "s782",
820
+ "s783",
821
+ "s784",
822
+ "s785",
823
+ "s786",
824
+ "s787",
825
+ "s788",
826
+ "s789",
827
+ "s790",
828
+ "s791",
829
+ "s792",
830
+ "s793",
831
+ "s794",
832
+ "s795",
833
+ "s796",
834
+ "s797",
835
+ "s798",
836
+ "s799",
837
+ "s800",
838
+ "s801",
839
+ "s802",
840
+ "s803",
841
+ "s804",
842
+ "s805",
843
+ "s806",
844
+ "s807",
845
+ "s808",
846
+ "s809",
847
+ "s810",
848
+ "s811",
849
+ "s812",
850
+ "s813",
851
+ "s814",
852
+ "s815",
853
+ "s816",
854
+ "s817",
855
+ "s818",
856
+ "s819",
857
+ "s820",
858
+ "s821",
859
+ "s822",
860
+ "s823",
861
+ "s824",
862
+ "s825",
863
+ "s826",
864
+ "s827",
865
+ "s828",
866
+ "s829",
867
+ "s830",
868
+ "s831",
869
+ "s832",
870
+ "s833",
871
+ "s834",
872
+ "s835",
873
+ "s836",
874
+ "s837",
875
+ "s838",
876
+ "s839",
877
+ "s840",
878
+ "s841",
879
+ "s842",
880
+ "s843",
881
+ "s844",
882
+ "s845",
883
+ "s846",
884
+ "s847",
885
+ "s848",
886
+ "s849",
887
+ "s850",
888
+ "s851",
889
+ "s852",
890
+ "s853",
891
+ "s854",
892
+ "s855",
893
+ "s856",
894
+ "s857",
895
+ "s858",
896
+ "s859",
897
+ "s860",
898
+ "s861",
899
+ "s862",
900
+ "s863",
901
+ "s864",
902
+ "s865",
903
+ "s866",
904
+ "s867",
905
+ "s868",
906
+ "s869",
907
+ "s870",
908
+ "s871",
909
+ "s872",
910
+ "s873",
911
+ "s874",
912
+ "s875",
913
+ "s876",
914
+ "s877",
915
+ "s878",
916
+ "s879",
917
+ "s880",
918
+ "s881",
919
+ "s882",
920
+ "s883",
921
+ "s884",
922
+ "s885",
923
+ "s886",
924
+ "s887",
925
+ "s888",
926
+ "s889",
927
+ "s890",
928
+ "s891",
929
+ "s892",
930
+ "s893",
931
+ "s894",
932
+ "s895",
933
+ "s896",
934
+ "s897",
935
+ "s898",
936
+ "s899",
937
+ "s900",
938
+ "s901",
939
+ "s902",
940
+ "s903",
941
+ "s904",
942
+ "s905",
943
+ "s906",
944
+ "s907",
945
+ "s908",
946
+ "s909",
947
+ "s910",
948
+ "s911",
949
+ "s912",
950
+ "s913",
951
+ "s914",
952
+ "s915",
953
+ "s916",
954
+ "s917",
955
+ "s918",
956
+ "s919",
957
+ "s920",
958
+ "s921",
959
+ "s922",
960
+ "s923",
961
+ "s924",
962
+ "s925",
963
+ "s926",
964
+ "s927",
965
+ "s928",
966
+ "s929",
967
+ "s930",
968
+ "s931",
969
+ "s932",
970
+ "s933",
971
+ "s934",
972
+ "s935",
973
+ "s936",
974
+ "s937",
975
+ "s938",
976
+ "s939",
977
+ "s940",
978
+ "s941",
979
+ "s942",
980
+ "s943",
981
+ "s944",
982
+ "s945",
983
+ "s946",
984
+ "s947",
985
+ "s948",
986
+ "s949",
987
+ "s950",
988
+ "s951",
989
+ "s952",
990
+ "s953",
991
+ "s954",
992
+ "s955",
993
+ "s956",
994
+ "s957",
995
+ "s958",
996
+ "s959",
997
+ "s960",
998
+ "s961",
999
+ "s962",
1000
+ "s963",
1001
+ "s964",
1002
+ "s965",
1003
+ "s966",
1004
+ "s967",
1005
+ "s968",
1006
+ "s969",
1007
+ "s970",
1008
+ "s971",
1009
+ "s972",
1010
+ "s973",
1011
+ "s974",
1012
+ "s975",
1013
+ "s976",
1014
+ "s977",
1015
+ "s978",
1016
+ "s979",
1017
+ "s980",
1018
+ "s981",
1019
+ "s982",
1020
+ "s983",
1021
+ "s984",
1022
+ "s985",
1023
+ "s986",
1024
+ "s987",
1025
+ "s988",
1026
+ "s989",
1027
+ "s990",
1028
+ "s991",
1029
+ "s992",
1030
+ "s993",
1031
+ "s994",
1032
+ "s995",
1033
+ "s996",
1034
+ "s997",
1035
+ "s998",
1036
+ "s999",
1037
+ "<eop>",
1038
+ "<eog>",
1039
+ "<|begin_of_sentence|>",
1040
+ "<|end_of_sentence|>",
1041
+ "<|User|>",
1042
+ "<|Assistant|>",
1043
+ "<think>",
1044
+ "</think>",
1045
+ "<search_result>",
1046
+ "</search_result>",
1047
+ "<search_query>",
1048
+ "</search_query>",
1049
+ "<code_query>",
1050
+ "</code_query>",
1051
+ "<code_result>",
1052
+ "</code_result>",
1053
+ "<infer>",
1054
+ "</infer>",
1055
+ "<inferresult>",
1056
+ "</inferresult>",
1057
+ "<tool_calls>",
1058
+ "</tool_calls>",
1059
+ "<tool_response>",
1060
+ "</tool_response>",
1061
+ "<final_answer>",
1062
+ "</final_answer>"
1063
+ ],
1064
+ "bos_token": {
1065
+ "content": "<s>",
1066
+ "lstrip": false,
1067
+ "normalized": false,
1068
+ "rstrip": false,
1069
+ "single_word": false
1070
+ },
1071
+ "eos_token": {
1072
+ "content": "<eod>",
1073
+ "lstrip": false,
1074
+ "normalized": false,
1075
+ "rstrip": false,
1076
+ "single_word": false
1077
+ },
1078
+ "unk_token": {
1079
+ "content": "<unk>",
1080
+ "lstrip": false,
1081
+ "normalized": false,
1082
+ "rstrip": false,
1083
+ "single_word": false
1084
+ }
1085
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c84861a800c30e71099d63dca0963edbacf554586527ac037155a0560e2fb04
3
+ size 14976038
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36f79e0c70f73cdd2a8dd0fbe7bfe290da158eea746778d289e4ad76c8b383d9
3
+ size 2155861
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
utils.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (Callable, Dict, Iterable, List, Literal, Mapping, Optional, Protocol, Set, Tuple, Union, overload)
2
+ import torch
3
+ from torch.func import functional_call
4
+
5
+ @overload
6
+ def flatten_bn(x: torch.Tensor) -> torch.Tensor:
7
+ ...
8
+
9
+
10
+ @overload
11
+ def flatten_bn(x: List[torch.Tensor]) -> List[torch.Tensor]:
12
+ ...
13
+
14
+
15
+ @overload
16
+ def flatten_bn(
17
+ x: Union[List[torch.Tensor], torch.Tensor],
18
+ *,
19
+ concat: Literal[True],
20
+ ) -> torch.Tensor:
21
+ ...
22
+
23
+
24
+ @overload
25
+ def flatten_bn(
26
+ x: Union[List[torch.Tensor], torch.Tensor],
27
+ *,
28
+ concat: bool = False,
29
+ ) -> Union[List[torch.Tensor], torch.Tensor]:
30
+ ...
31
+
32
+
33
+ def flatten_bn(
34
+ x: Union[List[torch.Tensor], torch.Tensor],
35
+ *,
36
+ concat: bool = False,
37
+ ) -> Union[List[torch.Tensor], torch.Tensor]:
38
+ """
39
+ Flatten the ``B`` and ``N`` dimensions of batched multimodal inputs.
40
+
41
+ The input tensor should have shape ``(B, N, ...)```.
42
+ """
43
+ if isinstance(x, torch.Tensor):
44
+ return x.flatten(0, 1)
45
+
46
+ if concat:
47
+ return torch.cat(x)
48
+
49
+ return [x_n for x_b in x for x_n in x_b]
50
+
51
+ def _flatten_embeddings(embeddings: torch.Tensor) -> torch.Tensor:
52
+ """
53
+ Recursively flattens and concatenates NestedTensors on all but the last
54
+ dimension.
55
+ """
56
+
57
+ if isinstance(embeddings, torch.Tensor):
58
+ # Flatten all but the last dimension.
59
+ return embeddings.flatten(0, -2)
60
+
61
+ return torch.cat(tuple(_flatten_embeddings(t) for t in embeddings))
62
+
63
+ def _embedding_count_expression(embeddings: torch.Tensor) -> str:
64
+ """
65
+ Constructs a debugging representation of the number of embeddings in the
66
+ Tensors.
67
+ """
68
+
69
+ if isinstance(embeddings, torch.Tensor):
70
+ return " x ".join([str(dim) for dim in embeddings.shape[:-1]])
71
+
72
+ return " + ".join(
73
+ _embedding_count_expression(inner) for inner in embeddings)
74
+
75
+ def _merge_multimodal_embeddings(
76
+ inputs_embeds: torch.Tensor,
77
+ is_multimodal: torch.Tensor,
78
+ multimodal_embeddings: torch.Tensor,
79
+ ) -> torch.Tensor:
80
+ """
81
+ Merge ``multimodal_embeddings`` into ``inputs_embeds`` by overwriting the
82
+ positions in ``inputs_embeds`` corresponding to placeholder tokens in
83
+ ``input_ids``.
84
+
85
+ Note:
86
+ This updates ``inputs_embeds`` in place.
87
+ """
88
+ num_expected_tokens = is_multimodal.sum().item()
89
+ assert isinstance(num_expected_tokens, int)
90
+ # [total_patches, text_config.hidden_size]
91
+ flattened = _flatten_embeddings(multimodal_embeddings)
92
+ if flattened.shape[0] != num_expected_tokens:
93
+ expr = _embedding_count_expression(multimodal_embeddings)
94
+ raise ValueError(
95
+ f"Attempted to assign {expr} = {flattened.shape[0]} "
96
+ f"multimodal tokens to {num_expected_tokens} placeholders")
97
+
98
+ inputs_embeds[is_multimodal] = flattened
99
+ return inputs_embeds
100
+
101
+ def merge_multimodal_embeddings(
102
+ input_ids: torch.Tensor,
103
+ inputs_embeds: torch.Tensor,
104
+ multimodal_embeddings: torch.Tensor,
105
+ placeholder_token_id: Union[int, List[int]],
106
+ ) -> torch.Tensor:
107
+ """
108
+ Merge ``multimodal_embeddings`` into ``inputs_embeds`` by overwriting the
109
+ positions in ``inputs_embeds`` corresponding to placeholder tokens in
110
+ ``input_ids``.
111
+
112
+ ``placeholder_token_id`` can be a list of token ids (e.g, token ids
113
+ of img_start, img_break, and img_end tokens) when needed: This means
114
+ the order of these tokens in the ``input_ids`` MUST MATCH the order of
115
+ their embeddings in ``multimodal_embeddings`` since we need to
116
+ slice-merge instead of individually scattering.
117
+
118
+ For example, if input_ids is "TTTTTSIIIBIIIBIIIETTT", where
119
+ - T is text token
120
+ - S is image start token
121
+ - I is image embedding token
122
+ - B is image break token
123
+ - E is image end token.
124
+
125
+ Then the image embeddings (that correspond to I's) from vision encoder
126
+ must be padded with embeddings of S, B, and E in the same order of
127
+ input_ids for a correct embedding merge.
128
+
129
+ Note:
130
+ This updates ``inputs_embeds`` in place.
131
+ """
132
+ if isinstance(placeholder_token_id, list):
133
+ placeholder_token_id = torch.tensor(placeholder_token_id,
134
+ device=input_ids.device)
135
+ return _merge_multimodal_embeddings(
136
+ inputs_embeds,
137
+ torch.isin(input_ids, placeholder_token_id),
138
+ multimodal_embeddings,
139
+ )
140
+ return _merge_multimodal_embeddings(
141
+ inputs_embeds,
142
+ (input_ids == placeholder_token_id),
143
+ multimodal_embeddings,
144
+ )