Create practice.py
Browse files- practice.py +55 -0
practice.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from tensorflow import keras
|
| 3 |
+
from sklearn.model_selection import train_test_split
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
|
| 6 |
+
# Загрузка датасета Fashion MNIST
|
| 7 |
+
(X_train_full, y_train_full), (X_test, y_test) = keras.datasets.fashion_mnist.load_data()
|
| 8 |
+
|
| 9 |
+
# Нормализация данных
|
| 10 |
+
X_train_full = X_train_full.astype('float32') / 255.
|
| 11 |
+
X_test = X_test.astype('float32') / 255.
|
| 12 |
+
|
| 13 |
+
# Разбиение на тренировочную, валидационную и тестовую части
|
| 14 |
+
X_train, X_val = train_test_split(X_train_full, test_size=0.2, random_state=42)
|
| 15 |
+
X_val, X_test = train_test_split(X_val, test_size=0.5, random_state=42)
|
| 16 |
+
|
| 17 |
+
# Создание нейросети
|
| 18 |
+
input_shape = X_train.shape[1:]
|
| 19 |
+
latent_dim = 50
|
| 20 |
+
autoencoder = keras.models.Sequential([
|
| 21 |
+
keras.layers.Flatten(input_shape=input_shape),
|
| 22 |
+
keras.layers.Dense(256, activation='relu'),
|
| 23 |
+
keras.layers.Dense(128, activation='relu'),
|
| 24 |
+
keras.layers.Dense(latent_dim, activation='relu', name='latent_layer'),
|
| 25 |
+
keras.layers.Dense(128, activation='relu'),
|
| 26 |
+
keras.layers.Dense(256, activation='relu'),
|
| 27 |
+
keras.layers.Dense(np.prod(input_shape), activation='sigmoid'),
|
| 28 |
+
keras.layers.Reshape(input_shape)
|
| 29 |
+
])
|
| 30 |
+
|
| 31 |
+
# Компиляция и обучение.# binary_crossentropy может и не нужна, но тема рабочая, менять не буду.
|
| 32 |
+
autoencoder.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy'])
|
| 33 |
+
history = autoencoder.fit(X_train, X_train,
|
| 34 |
+
epochs=50,
|
| 35 |
+
batch_size=128,
|
| 36 |
+
validation_data=(X_val, X_val))
|
| 37 |
+
|
| 38 |
+
# Визуализация результатов. Я лично доволен. Оно работает!!!
|
| 39 |
+
n = 7 # количество изображений для примера
|
| 40 |
+
decoded_imgs = autoencoder.predict(X_test[:n]) # Кодировка и декодировка тестовых изображений
|
| 41 |
+
plt.figure(figsize=(10, 4.5))
|
| 42 |
+
for i in range(n):
|
| 43 |
+
# Оригинальное изображение
|
| 44 |
+
ax = plt.subplot(2, n, i + 1)
|
| 45 |
+
plt.imshow(X_test[i])
|
| 46 |
+
plt.gray()
|
| 47 |
+
ax.get_xaxis().set_visible(False)
|
| 48 |
+
ax.get_yaxis().set_visible(False)
|
| 49 |
+
|
| 50 |
+
# Декодированное изображение
|
| 51 |
+
ax = plt.subplot(2, n, i + 1 + n)
|
| 52 |
+
plt.imshow(decoded_imgs[i])
|
| 53 |
+
plt.gray()
|
| 54 |
+
ax.get_xaxis().set_visible(False)
|
| 55 |
+
ax.get_yaxis().set_visible(False)
|